首页 | 本学科首页   官方微博 | 高级检索  
     检索      

UV强化草酸络合Fe3+活化过硫酸盐氧化降解苯胺
引用本文:韩东晖,李瑛,李开明,应光国.UV强化草酸络合Fe3+活化过硫酸盐氧化降解苯胺[J].环境科学,2018,39(9):4257-4264.
作者姓名:韩东晖  李瑛  李开明  应光国
作者单位:环境保护部华南环境科学研究所广东省水与大气污染防治重点实验室;中国科学院广州地球化学研究所;华南师范大学环境研究院
基金项目:广东省自然科学基金项目(2016A030310021);中央级公益性科研院所基本科研业务费专项(PM-zx703-201602-058)
摘    要:采用UV-草酸络合Fe~(3+)UV-Fe(C_2O_4)3-3]活化过硫酸钠(PS)氧化降解苯胺,研究了Fe(C_2O_4)3-3浓度,PS浓度,pH对PS活化效率及苯胺氧化降解效果的影响机制.结果表明,Fe(C_2O_4)3-3浓度和pH决定了UV-Fe(C_2O_4)3-3体系中Fe~(3+)向Fe2+的转化过程,并对活化PS氧化降解苯胺产生显著影响.随着Fe(C_2O_4)3-3浓度增加,PS的分解率不断提高,但当浓度高于0.75 mmol·L~(-1)时,草酸根离子(C2O_2-4)对硫酸根自由基(SO·-4)的竞争以及SO·-4之间的相互淬灭作用降低了苯胺的降解效果,降解速率大小顺序为5 mmol·L~(-1)0.25 mmol·L~(-1)0.5 mmol·L~(-1)1 mmol·L~(-1)0.75 mmol·L~(-1);中性和碱性条件不利于Fe(C_2O_4)3-3发生光化学反应生成Fe2+,但当初始pH为7和9时,由于PS活化分解过程降低反应体系pH,反应300min时PS的活化率可分别达到74%和67%,苯胺去除率分别高达91%和97%,均高于初始pH为酸性条件下的结果;苯胺降解率随初始PS浓度增加而增大,当PS浓度大于10 mmol·L~(-1)时,苯胺降解过程由二级反应变为准一级反应,但此时过量的PS因与SO·-4发生反应而显著降低PS用于氧化降解苯胺的利用率.

关 键 词:紫外光  草酸络合铁离子  过硫酸盐  活化  氧化
收稿时间:2018/1/22 0:00:00
修稿时间:2018/3/16 0:00:00

Enhanced Degradation of Aniline by PS Oxidation in the Presence of UV and Ferric Oxalate
HAN Dong-hui,LI Ying,LI Kai-ming and YING Guang-guo.Enhanced Degradation of Aniline by PS Oxidation in the Presence of UV and Ferric Oxalate[J].Chinese Journal of Environmental Science,2018,39(9):4257-4264.
Authors:HAN Dong-hui  LI Ying  LI Kai-ming and YING Guang-guo
Institution:Key Laboratory of Water & Air Pollution Control of Guangdong Province, South China Institute of Environmental Science, Ministry of Environmental Protection, Guangzhou 510655, China,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China,Key Laboratory of Water & Air Pollution Control of Guangdong Province, South China Institute of Environmental Science, Ministry of Environmental Protection, Guangzhou 510655, China and Environmental Research Institute, South China Normal University, Guangzhou 510006, China
Abstract:Oxidative degradation of aniline by Sodium Persulfate (PS) activated with UV-ferric oxalateUV-Fe(C2O4)33-] was studied. The effects of Fe(C2O4)33- concentration, PS concentration, and pH on PS activation and aniline degradation were investigated. Results showed that Fe(C2O4)33- concentration and pH determined the reduction process of Fe3+ into Fe2+, which had significant effects on the oxidative degradation of aniline by PS. With an increase in Fe(C2O4)33- concentration, PS decomposition increased; however, when concentrations were>0.75 mmol·L-1, aniline degradation efficiency decreased due to competition with oxalate ions (C2O42-) for SO4·-. Aniline degradation efficiency in processes with different initial Fe(C2O4)33- concentrations followed the sequence:5 mmol·L-1 < 0.25 mmol·L-1 < 0.5 mmol·L-1 < 1 mmol·L-1 < 0.75 mmol·L-1. Neutral and alkaline conditions were not conducive to Fe2+ formation via photochemical reaction. However, with initial pH values of 7 and 9, PS activation efficiency reached 74% and 67% respectively after 300 min due to pH decline during the reaction; aniline removal efficiency was as high as 91% and 97%, respectively, higher than under initial acidic conditions. Furthermore, increased PS concentration was conducive to improvement of aniline degradation efficiency, but when PS concentration was>10 mmol·L-1, the aniline degradation process followed the pseudo first-order reaction kinetics model instead of the second-order reaction kinetics model. PS efficiency for aniline degradation decreased significantly due to the reaction between excessive PS and sulfate radicals.
Keywords:ultraviolet light  ferric oxalate  persulfate  activation  oxidation
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号