首页 | 本学科首页   官方微博 | 高级检索  
     检索      

广西大石围天坑中多环芳烃的大气传输与分异
引用本文:孔祥胜,祁士华,孙骞,黄保健.广西大石围天坑中多环芳烃的大气传输与分异[J].环境科学,2012,33(12):4212-4219.
作者姓名:孔祥胜  祁士华  孙骞  黄保健
作者单位:1. 中国地质大学武汉环境学院,武汉430074 中国地质科学院岩溶地质研究所,桂林541004 中国地质科学院岩溶生态系统与石漠化治理重点开放实验室,桂林541004
2. 中国地质大学武汉环境学院,武汉,430074
3. 桂林市环境保护局,桂林,541001
4. 中国地质科学院岩溶地质研究所,桂林,541004
基金项目:中国地质科学院岩溶地质研究所所控项目(200720); 国家自然科学基金项目(40473043)
摘    要:选择典型的岩溶地区广西乐业大石围天坑群为研究对象,利用聚氨酯泡沫被动采样器(PUF-PAS)采集大石围天坑口部至地下河剖面空气样品,并进行了气象参数的观测.利用气相色谱-质谱仪(GC-MS)测定16种多环芳烃(PAHs)优先控制污染物.结果表明,大石围天坑至地下河空气中ΣPAHs浓度范围为33.76~150.86 ng·d-1,平均值80.36 ng·d-1,其中绝壁、底部和地下河浓度分别为67.17、85.36和101.67 ng·d-1;空气中PAHs以2~3环的菲、蒽、萘、芴4种为主,占87.97%.PHAs的源来自于大气传输的化石燃料的燃烧.大石围天坑空气中PAHs的富集与传输过程为:地表-绝壁-底部-地下河,且浓度随深度/长度的增加有明显的增加趋势,在西峰脚、天坑底部和地下河处,低分子量的PAHs菲、蒽、芴和荧蒽发生了分异作用.温度是影响天坑中PAHs大气传输、富集的主要因子,其次为风向、风速和相对湿度;相对湿度和温度都是PAHs分异作用的主要因子,风速和风向为次要因子.总体上,天坑明显地展现了持久性有机污染物(POPs)的"冷陷阱效应"。

关 键 词:多环芳烃  大石围天坑  传输  分异作用  气象参数
收稿时间:2012/2/21 0:00:00
修稿时间:4/5/2012 12:00:00 AM

Transport and Differentiation of Polycyclic Aromatic Hydrocarbons in Air from Dashiwei Karst Sinkholes in Guangxi, China
KONG Xiang-sheng,QI Shi-hu,SUN Qian and HUANG Bao-jian.Transport and Differentiation of Polycyclic Aromatic Hydrocarbons in Air from Dashiwei Karst Sinkholes in Guangxi, China[J].Chinese Journal of Environmental Science,2012,33(12):4212-4219.
Authors:KONG Xiang-sheng  QI Shi-hu  SUN Qian and HUANG Bao-jian
Institution:School of Environmental Studies, China University of Geoscience, Wuhan 430074, China;Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China;Key Open Laboratory of Karst Ecosystem and Rocky Desertification Control, Chinese Academy of Geological Sciences, Guilin 541004, China;School of Environmental Studies, China University of Geoscience, Wuhan 430074, China;Environmental Protection Bureau of Guilin, Guilin 541001, China;Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
Abstract:The typical karst Dashiwei Sinkholes located in Leye County, Guangxi were chosen as the study object. The air samples from the opening of Dashiwei Sinkholes to the underground river profiles were collected by polyurethane foam passive samplers (PUF-PAS), and the meteorological parameters were observed. The 16 PAHs were analyzed using GC-MS. The results showed that the total PAHs concentration in air in Dashiwei Sinkholes ranged from 33.76 ng·d-1 to 150.86 ng·d-1, with an average of 80.36 ng·d-1. The mean concentrations in the cliff, the bottom and the underground river profiles were 67.17, 85.36 and 101.67 ng·d-1, respectively. The 2-3 rings PAHs (including phenanthrene, anthracene, napnthalene and fluorene) accounted for 87.97% of the total of PAHs. The transport and accumulation processes of PAHs in air in Dashiwei Sinkholes were: the ground to the cliff section to the bottom section and then to the underground river, and the total PAHs concentrations showed an obvious increasing tendency with the decrease in altitude or increase in the length of the underground river. Low molecular weight PAHs compounds (including phenanthrene, anthracene, flourene and fluoranthene) in air went through differentiation at the bottom of the west peak, the bottom of the sinkhole and the underground river. The primary sources of PAHs were pyrogenic sources with atmosphere transport. Ambient temperature was the predominating factor influencing the transport and accumulation of gas phase PAHs in Dashiwei Sinkholes, following by wind speed, wind direction and relative humidity. Relative humidity and the temperature were the predominating factors influencing the differentiation, following by wind speed and wind direction. As a whole, a "cold trapping effect" of POPs was showed obviously in Dashiwei Sinkholes.
Keywords:polycyclic aromatic hydrocarbons  Dashiwei Sinkholes  transport  differentiation  meteorological parameter
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号