首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 484 毫秒
1.
采用填充床电化学反应器,以Na2SO4为支持电解质,分别以IrO2-Ta2O5/Ti和PbO2/Ti为阳极,以Ti板为阴极催化氧化降解苯酚。考察了电流密度和进水流量对废水COD去除率、平均电流效率(ACE)和电耗(Esp)的影响。实验结果表明:PbO2/Ti阳极电催化氧化苯酚的效率高于IrO2-Ta2O5/Ti阳极,且PbO2/Ti阳极有更高的ACE和更低的Esp;在以PbO2/Ti为阳极、电流密度为100 A/m2、进水流量为0.8 L/h的条件下,COD去除率最高为90.59%,ACE较高,Esp较低。  相似文献   

2.
采用溶胶-凝胶法制备了纳米晶体表层钛阳极,并表征了该钛阳极的形貌。实验结果表明:纳米晶体表层钛阳极表面平整,裂隙很少,且提高了电流效率;制作的中间涂层,在保护钛板、节省贵金属的同时使钛阳极涂层具有一定的梯度结构,增加了涂层的结合力,使该钛阳极具有较长的使用寿命,最佳条件下可使用15a以上;纳米晶体表层钛阳极处理硝基苯废水的最佳实验条件为:pH=2,每平方厘米纳米晶体表层钛阳极处理12mL废水,电流密度10mA/cm^2。在此最佳条件下,在较低耗电量(每吨废水耗电量低于6kW·h)的情况下硝基苯去除率大于98%。  相似文献   

3.
采用臭氧氧化—曝气生物滤池联用处理实际生产中排放的含硝基苯类化合物废水。实验结果表明:臭氧氧化过程可破坏硝基苯类化合物的苯环结构,显著提高有机物的可生物降解性;单独采用臭氧氧化法,在臭氧氧化柱进水pH为9、臭氧加入量为200m g/L的条件下,硝基苯类化合物的去除率可达98%;采用臭氧氧化—曝气生物滤池联用处理含高浓度硝基苯类化合物废水,COD去除率可达80%以上,处理后废水COD稳定在50m g/L以下。  相似文献   

4.
三维电极法处理六硝基茋生产废水   总被引:1,自引:0,他引:1       下载免费PDF全文
以Ti板为阴极、Ti/IrO2-Ta2O5电极为阳极,采用三维电极法处理六硝基茋生产废水。通过单因素实验和正交实验确定的最佳工艺条件为:电解电压8 V,电解时间4 h,极板间距5 mm,初始废水COD=3 120 mg/L,m(玻璃珠)∶m(活性炭)=1∶3(选定活性炭的质量为5.0 g),ρ(硫酸钠)=500 mg/L。在此最佳工艺条件下,废水COD去除率为36.5%。  相似文献   

5.
以Ti板为阴极、Ti/IrO2-Ta2O5电极为阳极,采用三维电极法处理六硝基茋生产废水。通过单因素实验和正交实验确定的最佳工艺条件为:电解电压8 V,电解时间4 h,极板间距5 mm,初始废水COD=3 120 mg/L,m(玻璃珠)∶m(活性炭)=1∶3(选定活性炭的质量为5.0 g),ρ(硫酸钠)=500 mg/L。在此最佳工艺条件下,废水COD去除率为36.5%。  相似文献   

6.
Ti_5O_9-Ti_4O_7电极电化学处理2,4,6-三硝基苯酚废水   总被引:1,自引:0,他引:1       下载免费PDF全文
采用压片-烧结法制备了Ti5O9-Ti4O7电极,采用XRD和SEM技术对Ti5O9-Ti4O7电极进行了表征。以自制的Ti5O9-Ti4O7电极为阳极,电解处理含2,4,6-三硝基苯酚(TNP)的模拟废水,考察了电流密度、电解质质量浓度、废水p H、废水温度和反应时间等因素对废水COD去除率和TNP降解率的影响。表征结果显示:该电极的主要成分为Ti5O9,并含有部分Ti4O7;该电极的比表面积较大。Ti5O9-Ti4O7电极电解处理含TNP废水的最佳实验条件为:电流密度20 m A/cm2、电解质Na2SO4质量浓度6.0 g/L、废水p H为7、废水温度30℃。在此最佳条件下电解反应180 min后,COD去除率为90.6%,TNP降解率为93.9%,表明Ti5O9-Ti4O7电极具有较高的催化能力和电流效率。  相似文献   

7.
利用刷涂法制备了Ti/SnO2-RuO2电极,并通过SEM、XRD等测试手段对其进行形貌及结构表征。利用该电极为阳极处理黑索金(RDX)废水,考察了电解质种类、电解质质量浓度、废水pH、电流密度以及电解时间等对RDX电催化氧化效果的影响。实验结果表明,当处理100 mL质量浓度为50 mg/L的RDX废水时,以Na2SO4为电解质、Na2SO4质量浓度为5.0 g/L、废水pH为7、电流密度为15 mA/cm2、电解时间为300 min的条件下,RDX去除率达到82.55%,COD去除率达到55.41%。  相似文献   

8.
O3-H2O2氧化法处理印染废水   总被引:2,自引:0,他引:2       下载免费PDF全文
彭人勇  邱晓 《化工环保》2013,33(4):308-311
采用O3-H2O2氧化法对印染废水进行氧化处理,比较了O3氧化法和O3-H2O2氧化法对印染废水的处理效果,考察了初始废水pH、H2O2加入量、O3流量和反应时间对废水的色度去除率和COD去除率的影响。实验结果表明:O3-H2O2氧化法对废水的COD和色度的去除效果比O3氧化法更好;在初始废水pH为11、H2O2加入量为13mmol/L、O3流量为6g/h、反应时间为60min的最佳工艺条件下,处理后废水COD为61.50mg/L,COD去除率为95.73%,废水色度为5倍,色度去除率为99.75%,TOC为37.84mg/L,TOC去除率为85.10%,BOD5为22.76mg/L,BOD5去除率为90.20%,BOD5/COD为0.37。  相似文献   

9.
采用大孔树脂吸附—Fenton试剂氧化法预处理含邻苯二甲酸二异丁酯(DIBP)废水。大孔树脂吸附工段的最佳实验条件为:以树脂NDA88为吸附剂,废水pH为2。NDA88经过10批次的连续使用,COD去除率基本稳定在58%左右,脱附率可达96%以上,吸附后废水COD为12 000 mg/L左右。Fenton试剂氧化工段的最佳实验条件为:H2O2加入量70 mL/L,n(H2O2):n(Fe2+)=4,废水pH 4。在此最佳条件下进行实验,Fenton试剂氧化工段COD去除率达65%,处理后废水COD为4 200 mg/L。  相似文献   

10.
以实际中药废水作为阳极基质、实际含镉废水作为阴极电解液,构建了连续流双室微生物燃料电池(MFC),考察了其产电性能及对两种废水的处理效果。78 d的运行数据表明:系统可实现最大输出电压417mV、最大体积功率密度11.8 W/m3,最大体积功率密度运行条件下的库伦效率为18.5%;在阳极进水有机物浓度变化较大的情况下,实现了阳极对中药废水中有机物的有效去除,平均COD去除率为81.5%;阴极对含镉废水中Cd2+的去除率为79.4%~84.8%。这表明MFC同步处理中药废水及重金属废水具有一定的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号