首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张四维  郭俊宏 《化工环保》2021,41(5):647-650
分别采用新型化学气相沉积(CVD)硫化金属Mo的方法以及传统CVD硫化MoO3的方法制备了MoS2薄膜,对其物相和形貌进行了表征,探究了对亚甲基蓝的光催化降解性能.表征结果显示:蒸镀Mo 5 min制备的MoS2薄膜具有多个晶面生长方向,其形貌多为完整的棒状;蒸镀Mo 1 min制备的MoS2多为棒状碎片;硫化MoO3...  相似文献   

2.
光助Fenton氧化法降解水中的活性艳蓝KN-R   总被引:2,自引:2,他引:0  
采用光助Fenton氧化法降解水中的活性艳蓝KN-R染料.实验结果表明,在溶液pH为3,Fe2+、过氧化氢、草酸质量浓度分别为5,75,2 mg/L,反应时间为60 min时,色度、COD和TOC的去除率分别达到99%,80%和51%以上.水中阴离子对降解反应有阻碍或抑制作用,阴离子对COD去除率的影响从大到小为:NO-3>Cl->HCO-3>BrO-3>HPO2-4:对TOC去除率的影响从大到小为:NO-3>HPO2-4>Cl->Hco-3>BrO-3.  相似文献   

3.
以玉米秸秆为原料,硫酸锌为改性剂,采用一步热解法制备了ZnO/ZnS异质结构改性生物炭(MBC),并将其用于自然光增强吸附水中亚甲基蓝。表征结果显示:与未改性生物炭相比,MBC的比表面积显著增大,ZnO/ZnS异质结构颗粒均匀分布在其表面。实验结果表明:自然光可增强MBC对亚甲基蓝的吸附能力,600℃热解制备的MBC(MBC600)性能最佳;自然光下,初始质量浓度为10 mg/L、pH约为7的亚甲基蓝水溶液经MBC600处理240 min后,COD和色度均降为0;吸附过程更符合准二级动力学模型和Freundlich等温吸附模型;重复使用5次后,MBC600对亚甲基蓝的去除率仍保持在95%以上。  相似文献   

4.
以三聚氰胺为前驱体,经热解—回流法制备了石墨相氮化碳(g-C3N4),采用XRD、FTIR、SEM、EDS、PL等技术对g-C_3N_4进行了表征。研究了g-C_3N_4在UV-H_2O_2体系中对废水中亚甲基蓝(MB)的光降解效果。实验结果表明,UV+g-C_3N_4催化剂+H_2O_2体系能协同降解MB,在初始MB质量浓度为20 mg/L、初始废水p H为5、废水体积为250 mL、g-C_3N_4加入量为0.10 g、H_2O_2浓度为0.4 mmol/L、反应温度为25℃的优化工艺条件下,紫外光照射70 min时MB脱色率达98.32%。g-C_3N_4催化剂具有较好的重复使用性能,使用5次后MB脱色率仍保持在95.10%。  相似文献   

5.
采用颗粒活性炭掺杂生物质材料并在微波作用下制备了小麦秸秆(WH)微波生物炭和玉米秸秆(CB)微波生物炭,并用比表面积孔径分析仪、扫描电子显微镜和傅里叶变换红外光谱仪对其进行了表征,考察了微波生物炭对水中亚甲基蓝的吸附特性.实验结果表明:所制备的微波生物炭具有较大的比表面积和丰富的表面官能团,微波功率500 W制备的微波...  相似文献   

6.
研究了在聚乙二醇-200(PEG-200)活化下,Cu^2+催化H2O2氧化亚甲基蓝的褪色反应,建立了亚甲基蓝褪色催化动力学光度法测定痕量Cu^2+的方法。在25mL容量瓶中,加入1.00mL pH为11.68的氨水溶液、2.00mLH2O2溶液(质量分数15%)、1.00mL亚甲基蓝溶液(质量浓度0.20mg/mL)、3.00mL PEG~200溶液,76℃恒温反应5min后冷却,测定吸光度,根据加Cu^2+溶液和不加Cu^2+溶液的吸光度差值与Cu^2+质量浓度绘制了工作曲线,并由试样的吸光度差值确定痕量Cu^+含量。该法的测定波长为664nm,检出限为5.4×10^-6 g/L,最大相对标准偏差为2.58%,回收率为97.5%~104.5%。  相似文献   

7.
采用无机陶瓷超滤膜和低浓度阴离子表面活性剂十二烷基苯磺酸钠(SDBS)处理亚甲基蓝(MB)模拟废水,考察了废水中SDBS、MB浓度及废水pH对超滤过程的影响.实验结果表明:SDBS浓度影响MB在最大吸收波长处的吸光度值;当废水中SDBS浓度为1.20 mmol/L(即25℃时的临界胶束浓度)、废水中MB浓度为1.00 mmol/L、废水pH为9.0时,超滤效果最好;在此条件下,透过液中SDBS浓度和MB浓度分别为0.06 mmoL/L和0.01 mmol/L,MB的截留率为99.2%,膜通量为309.6 L/(m~2·h).SDBS对MB超滤过程的强化机理主要为MB与SDBS形成结合体析出及SDBS胶束的增溶作用.  相似文献   

8.
以粉煤灰基沸石为载体制备TiO2/沸石光催化剂,采用SEM和XRD对产物进行表征,并考察其对模似废水中亚甲基蓝(MB)的光催化降解活性及再生后的催化性能.实验结果表明:光催化剂中的TiO2主要为锐钛矿晶型;MB降解过程遵循—级Langmuir-Hinshelwood动力学方程;当光照时间为3h、MB质量浓度为10 mg/L、废水pH为7、TiO2/沸石加入量为1.5 g/L时,MB废水的脱色率可达96.46%;经200 W超声波、450℃热再生处理40 min后,再生催化剂对废水的脱色率为73.04%;再生催化剂重复使用8次后,废水脱色率仍可达43.27%.  相似文献   

9.
在微波辅助条件下合成了一系列Fe-Al柱撑蒙脱土.利用自制Fe-Al柱撑蒙脱土对模拟废水中的亚甲基蓝进行吸附实验.通过XRD和SEM分析可见,在微波条件下合成的Fe-A1柱撑剂能够使蒙脱土的层间距加大,从而使其具有更好的吸附性能.在Fe-Al柱撑蒙脱土加入量为1.8 g/L、吸附时间为20 min、亚甲基蓝质量浓度为40mg/L的条件下,亚甲基蓝去除率达95.13%.  相似文献   

10.
研究了在聚乙二醇-200(PEG-200)活化下,Cu2+催化H2O2氧化亚甲基蓝的褪色反应,建立了亚甲基蓝褪色催化动力学光度法测定痕量Cu2+的方法。在25mL容量瓶中,加入1.00mL pH为11.68的氨水溶液、2.00mL H2O2溶液(质量分数15%)、1.00mL亚甲基蓝溶液(质量浓度0.20mg/mL)、3.00mL PEG-200溶液,76℃恒温反应5min后冷却,测定吸光度,根据加Cu2+溶液和不加Cu2+溶液的吸光度差值与Cu2+质量浓度绘制了工作曲线,并由试样的吸光度差值确定痕量Cu2+含量。该法的测定波长为664nm,检出限为5.4×10-6g/L,最大相对标准偏差为2.58%,回收率为97.5%~104.5%。  相似文献   

11.
采用正交实验方法,确定了钠基蒙脱土吸附亚甲基蓝染料的最佳吸附条件.采用试剂再生法、超声波法、高温焙烧法、氢氧化钠—高温焙烧结合法对钠基蒙脱土吸附亚甲基蓝进行解吸.用扫描电子显微镜照片和红外光谱对吸附前后的钠基蒙脱土的结构进行表征.实验结果表明:在亚甲基蓝溶液pH为10、吸附温度为60℃、亚甲基蓝质量浓度为1 300 m...  相似文献   

12.
以木质素磺酸钠为原料单体、环氧氯丙烷为交联剂,采用反相乳液聚合法制备了木质素磺酸钠交联聚合物(SLCP),并将其用于水中有机染料的吸附。表征结果显示:SLCP基本保留了木质素磺酸钠的骨架和官能团,具有良好的热稳定性。实验结果表明:SLCP对亚甲基蓝(MB)有较好的吸附选择性,在加入量为0.5 g/L时就有较高的吸附效率;在溶液p H2~6范围内吸附量随溶液p H增大而迅速提高,溶液p H6后吸附量趋于稳定;最佳吸附温度为35℃;在SLCP加入量0.5 g/L、溶液p H 6.5、吸附温度25℃、初始MB质量浓度100.5 mg/L的条件下,吸附150 min基本可达平衡,吸附平衡时的吸附量和MB去除率分别为191.2 mg/g和95.1%;SLCP对MB的吸附符合Langmuir等温吸附模型,吸附动力学符合Lagergren拟二级动力学方程。  相似文献   

13.
以多级孔ZSM-5分子筛为吸附剂,吸附水中的亚甲基蓝(MB),考察了吸附条件对吸附效果的影响,并探讨了吸附的热力学和动力学特征。实验结果表明:在溶液pH为11、分子筛加入量为800 mg/L、吸附温度为303.15 K、吸附时间为60 min、初始MB质量浓度为20 mg/L的条件下,该分子筛对MB的吸附率达97%;溶液pH为5~12时,吸附率均达89%以上,说明该分子筛具有宽的pH适应范围;该分子筛对MB的吸附热力学符合Langmuir和Freundlich方程,293.15~313.15 K的饱和吸附量达50.51~62.11 mg/g,吸附为吸热、自发过程;吸附动力学符合拟二级动力学方程。  相似文献   

14.
彭娜  王开峰  涂常青  黎忠 《化工环保》2011,31(5):464-468
采用黄酒糟对模拟染料废水中的活性艳红和亚甲基蓝进行吸附.在染料初始质量浓度100 mg/L、黄酒糟加入量10 g/L、吸附时间2 h的条件下,当活性艳红废水初始pH 为2.0 ~10.0 时,黄酒糟对活性艳红的吸附率为94.0% ~95.7%;当亚甲基蓝废水初始pH 为11.0 ~12.0 时,黄酒糟对亚甲基蓝的吸附率...  相似文献   

15.
吴威  龚继来  曾光明 《化工环保》2015,35(4):426-431
采用液相还原法制备氧化石墨烯负载纳米零价铁吸附剂(Fe0/GO),并用于吸附去除溶液中的亚甲基蓝(MB)。考察了溶液p H、吸附温度、吸附时间、初始MB质量浓度对Fe0/GO吸附MB的影响。SEM等表征结果显示:Fe0以球形或短链形负载在GO上,增加了材料的反应活性位点;Fe0/GO的比表面积为158.32 m2/g,等电点为3。实验结果表明:在溶液p H为6、吸附时间5 h、吸附温度25℃的最佳条件下,加入400 mg/L的Fe0/GO,处理初始MB质量浓度为160 mg/L的MB溶液,MB去除率为89.26%,吸附量为125.5 mg/g;Langmuir等温吸附方程和Frenudlich等温吸附方程均能较好地描述Fe0/GO对MB的吸附过程;Fe0/GO对MB的吸附行为遵循准二级动力学方程;计算得出吸附温度为25℃、初始MB质量浓度为160 mg/L时的饱和吸附量为201.2 mg/g,平衡吸附量为124.3 mg/g。  相似文献   

16.
采用化学沉积法合成了MgO/SiO_2纳米复合材料,通过扫描电子显微镜和X射线能谱分析(SEM-EDX)、X射线衍射(XRD)、Zeta电位仪、FTIR等方法对其进行了表征。研究了MgO/SiO_2对亚甲基蓝(MB)和Cu~(2+)的吸附行为及同步吸附效果。表征结果表明:MgO/SiO_2为褶皱、凸起的球形形貌;MgO成功负载在SiO_2表面。实验结果表明:MgO/SiO_2对MB和Cu~(2+)的吸附符合准二级动力学模型和Langmuir等温吸附模型,MB和Cu~(2+)的饱和吸附量分别为83.72 mg/g和208.70 mg/g;MB和Cu~(2+)的同步吸附在MgO/SiO_2表面存在竞争关系;在溶液体积为30m L、MgO/SiO_2加入量为10 mg、MB质量浓度为10 mg/L或Cu~(2+)质量浓度为100 mg/L、吸附温度为25℃、吸附时间为24 h、初始溶液pH为4.00、解吸时间为4 h的条件下,MgO/SiO_2第1次吸附MB和Cu~(2+)的去除率分别为92.8%和90.1%,第5次吸附的去除率分别为59.6%和57.4%。  相似文献   

17.
陈莉荣  陈毛毛  刘文 《化工环保》2015,35(3):318-323
以拜耳法赤泥为原料、Na Cl为助溶剂,采用酸浸法溶出赤泥中的铁、铝元素,再与硅酸钠、硫酸氧钛反应制备出高效混凝剂含钛聚硅酸铝铁(T-PSAF),并将其用于模拟亚甲基蓝印染废水的脱色。实验结果表明:在硫酸浓度为8 mol/L、液固比(硫酸体积与干赤泥质量之比)为14 m L/g、酸浸温度为80℃、酸浸时间为80 min、Na Cl加入量为0.10 g/g(以干赤泥计)的优化酸浸条件下,铁、铝的浸出率分别为88.25%和73.21%;在n(Fe+Al)∶n(Ti)∶n(Si)=0.3∶0.3∶1、熟化p H为4~5、熟化时间为2 h、混凝剂加入量为25 m L/L的优化混凝条件下,初始亚甲基蓝质量浓度为10 mg/L的废水的脱色率可达87.1%,而当初始亚甲基蓝质量浓度增至150~200 mg/L时废水脱色率可达99%以上。  相似文献   

18.
以零价铁(ZVI)和一株高效脱色菌克雷伯氏菌yl-1作为联合体系,研究其对亚甲基蓝溶液的脱色性能,并采用单因素实验及中心组合设计-响应面分析法(CCD-RSM法)对该过程的脱色条件进行优化。实验结果表明:相比于单独ZVI体系和单独yl-1脱色菌体系,ZVI-脱色菌联合体系的脱色率分别提高了40%和10%;在初始pH为8、初始亚甲基蓝质量浓度为250 mg/L、ZVI投加量为4.0 g/L、反应温度为33℃的最优条件下,ZVI-脱色菌联合体系对亚甲基蓝脱色反应液的脱色率为91.33%。  相似文献   

19.
钛基IrO2-RuO2阳极电解处理亚甲基蓝溶液   总被引:1,自引:0,他引:1       下载免费PDF全文
宋冠军  杨坚  李文祥 《化工环保》2012,32(3):205-208
采用钛基IrO2-RuO2为阳极材料,不锈钢为阴极材料,NaCl质量浓度为10 g/L的溶液为电解液,对亚甲基蓝溶液进行电化学处理。实验结果表明:处理初始质量浓度为25 mg/L的亚甲基蓝溶液,电解电流0.050 A,电解20 min后亚甲基蓝去除率达95%;处理初始质量浓度为100 mg/L的亚甲基蓝溶液,电解电流0.100 A,电解30 min后亚甲基蓝去除率达98%。随着电解时间和电解电流的增加,亚甲基蓝去除率均增大。  相似文献   

20.
内电解-Fenton氧化法降解活性艳蓝X-BR机理   总被引:1,自引:1,他引:0  
以蒽醌染料活性艳蓝X-BR为研究对象,进行了内电解-Fenton氧化法降解蒽醌染料机理的研究。通过紫外-可见分光光度计、傅立叶变换红外光谱仪、高效液相色谱仪、离子质谱仪等分析检测仪器对反应过程中间产物进行了分析,并通过对各种谱图的解析,推断出了活性艳蓝X-BR在内电解-Fenton氧化法处理降解过程中的反应历程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号