首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 64 毫秒
1.
秋季南通近海大气气溶胶水溶性离子粒径分布特征   总被引:1,自引:0,他引:1  
2012年10~11月在南通近海设立观测点,利用Anderson分级采样器采集大气气溶胶样品,用离子色谱仪(Metrohm IC)分析其中10种水溶性离子组成.结果表明,南通秋季近海PM10和PM2.1中水溶性离子浓度分别为59.70,45.96μg/m3.PM2.1中主要离子质量浓度排列依次为SO42-NO3-NH4+Ca2+.SO42-,NO3-和NH4+占PM10中离子浓度的80%以上,二次离子为近海区域气溶胶的主要成分.SO42,NH4+和NO3-均表现出单峰型分布,峰值区间均为0.43~1.1μm,Ca2+,Na+和Cl-表现为双峰型.Ca2+高浓度峰值出现4.7~5.8μm粒径段内;Na+和Cl-峰值出现在0.43~1.1μm和3.3~5.8μm内,但最大峰值浓度区间不一致.PM10中nss-SO42-/SO42-比值均高于90%,陆地源对近海硫酸盐的影响显著.nss-SO42-/NO3-的比值在2.1μm的粒径段内均大于1,表明该区域固定源是大气细粒子中离子的重要贡献源,但移动源对粗粒子的影响值得重视.个例分析显示,稳定的天气系统,高污染排放内陆地区的污染物传输,是造成10月27日的严重污染过程的主要原因.  相似文献   

2.
华南地区大气气溶胶中EC和水溶性离子粒径分布特征   总被引:1,自引:0,他引:1  
利用1988~2010年在华南地区广州、深圳、海口等多地采得的126组样品,初步分析了华南地区不同时段不同地区和水溶性离子成分的浓度变化及其粒径分布特征.结果表明:各站的AEC(等效元素碳)浓度和水溶性无机离子浓度差异较大,Na+和Cl-基本表现为海岛站点>海岸站点>乡村站点>城市站点,其余主要离子成分和AEC则表现为城市站点>乡村站点>海岸站点>海岛.城市站点、乡村站点、海岸站点和海岛站点AEC质量浓度在不同年段随粒径分布的变化趋势比较一致的,基本呈双峰结构,主峰主要位于0.43~0.65mm,次峰主要位于4.7~5.8mm.根据各离子的粒径分布的相似性可以将各种离子的垂直分布形态分为3类:二次离子(SO42-、NO3-和NH4+)呈现明显的三峰分布形态;F-、Ca2+、Mg2+、Na+和Cl-呈双峰分布形态;K+和AEC呈单峰分布形态,主峰位于细粒子模态.各成分浓度随高度的变化则呈现不同的变化规律.降水对气溶胶粒子的清除作用是显著的,尤其是粒径大于1μm的颗粒,而1.1~2.1μm的粒子段是降水清除的关键区.局地污染中,AEC质量浓度随粒径的分布呈现出了很明显的“单峰”结构,且主要集中在次微米段粒径范围内.  相似文献   

3.
为研究我国华北地区大气污染区域传输过程,2006-06在泰山日观峰上的泰山气象站,利用Andersen分级采样器同步进行了大气气溶胶采样,样品用离子色谱(IC)进行了分析.结果表明,SO2-4、NH 4、K 的浓度在0.43~0.65 μm出现峰值;Ca2 、Mg2 的浓度在4.7~5.8 μm出现峰值;NO-3、Na 、Cl-的浓度在0.43~0.65 μm和4.7~5.8 μm出现峰值.观测期间,高浓度的硫酸盐的质量中位直径在0.5~0.8 μm,属于"液滴模态".二次离子(SO2-4-、NH 4、NO-3)和K 浓度变化很剧烈,其它离子浓度变化不大.其中SO2-4的变化幅度最大,最低浓度为4.0 μg穖-3,最高浓度达到42.3 μg穖-3.来自泰山南方潮湿的气团是形成二次离子高值的原因.  相似文献   

4.
2012年10~11月在南通近海设立观测点,利用Anderson分级采样器采集大气气溶胶样品,用离子色谱仪(Metrohm IC)分析其中10种水溶性离子组成.结果表明,南通秋季近海PM10和PM2.1中水溶性离子浓度分别为59.70,45.96mg/m3.PM2.1中主要离子质量浓度排列依次为SO42->NO3->NH4+>Ca2+. SO42-,NO3-和NH4+占PM10中离子浓度的80%以上,二次离子为近海区域气溶胶的主要成分.SO42,NH4+和NO3-均表现出单峰型分布,峰值区间均为0.43~1.1mm,Ca2+,Na+和Cl-表现为双峰型.Ca2+高浓度峰值出现4.7~5.8mm粒径段内;Na+和Cl-峰值出现在0.43~1.1mm和3.3~5.8mm内,但最大峰值浓度区间不一致.PM10中nss-SO42-/SO42-比值均高于90%,陆地源对近海硫酸盐的影响显著.nss-SO42-/NO3-的比值在<2.1μm的粒径段内均大于1,表明该区域固定源是大气细粒子中离子的重要贡献源,但移动源对粗粒子的影响值得重视.个例分析显示,稳定的天气系统,高污染排放内陆地区的污染物传输,是造成10月27日的严重污染过程的主要原因.  相似文献   

5.
青岛大气气溶胶水溶性无机离子的粒径分布特征   总被引:7,自引:0,他引:7       下载免费PDF全文
为了解大气颗粒物中水溶性离子的来源及环境效应,利用安德森采样器连续采集青岛近海2008年1~12月大气颗粒物分级样品,用离子色谱法分析其中主要的水溶性离子,并讨论其粒径分布特征.结果表明, NH4+、K+、Cl-、NO3-、PO43-、SO42-主要存在于粒径小于2.1μm的细粒子中,Na+、Mg2+、Ca2+、F-则主要存在于粒径大于2.1μm的粗粒子中.各离子的粒径分布存在明显的季节变化.NH4+、K+和SO42-四季均主要分布于细粒子中,而Mg2+和Ca2+则主要分布在粗粒子中,两者均在3.3~4.7μm出现峰值;Na+在春、夏、秋3个季节主要存在于粗粒子中,集中分布在3.3~7.0μm粒径范围内,而在冬季则集中分布于0.43~1.1μm且细粒子含量高于粗粒子;春季Cl-在粗粒子中分布较多,尤以2.1~3.3μm范围内的最为突出,而其他3个季节均是细粒子比例明显偏高;NO3-春、夏两季在粗、细粒子中的含量各占50%,秋、冬季节均为细粒子占多数;PO43-夏季只出现在0.65~1.1μm以及>11μm的粒径范围内,粗粒子占95%,其他3个季节则是细粒子含量较高;春季F-在3.3~4.7μm出现峰值,夏季各粒径均未检出,而秋、冬两季粗、细粒子各占50%.K+、NH4+、F-、Cl-、NO3-、SO42-和PO43-受供暖期燃煤取暖的影响较大.K+和NH4+在供暖期和非供暖期峰值均出现在0.43~0.65μm粒径范围;F-供暖期在0.43~0.65μm和3.3~4.7μm粒径段出现峰值;供暖期Cl-的峰值出现在0.43~0.65μm粒径段,而在非供暖期,则出现在2.1~3.3μm的粗粒径段;SO42-和NO3-在供暖期和非供暖期的峰值均出现在0.43~0.65μm和3.3~4.7μm粒径段;供暖期PO43-的最大峰值出现在0.43~0.65μm粒径段,而在非供暖期其最大峰值出现在3.3~4.7μm粒径段.  相似文献   

6.
上海市大气颗粒物中水溶性离子的粒径分布特征   总被引:9,自引:4,他引:9       下载免费PDF全文
分析了上海市嘉定区不同粒径的大气颗粒物中9种水溶性离子(SO42-、NO3-、NH4+、K+、Na+、Cl-、Ca2+、Mg2+、F-)的分布特征.结果显示,SO42-、NO3-和NH4+含量很高,占9种离子总和的65%~81%.颗粒物的C/A值平均为1.08,说明颗粒物呈中性,略偏碱,这可能与缺少碳酸根等的测定有关.1.5μm颗粒物中的离子占所有粒径段离子的52%~87%,表明离子主要集中在细颗粒物中.NH4+、K+呈单峰分布,峰值出现在0.95μm的颗粒段;SO42-、NO3-、Ca2+、Cl-呈双峰分布,峰值分别出现在0.95μm和3.0~7.2μm的粒径段,其中SO42-、NO3-的较高峰出现在0.95μm的细颗粒段,Ca2+的较高峰出现在3.0μm的颗粒段,Cl-则两峰高度相当;既有双峰分布又有单峰分布的离子是Na+、Mg2+和F-,3种离子的较高峰出现在3.0μm的颗粒段.离子粒径分布与采样期间的气象条件、离子的形成机制和来源有关.  相似文献   

7.
阜康大气气溶胶中水溶性无机离子粒径分布特征研究   总被引:1,自引:1,他引:1  
为了解阜康大气气溶胶中水溶性无机离子的浓度水平、来源以及粒径分布,本研究于2011年2月~2012年2月利用8级惯性撞击式分级采样器采集了阜康大气气溶胶样品,使用离子色谱测定了其中水溶性无机离子含量.分析比较了非采暖期和采暖期主要离子的变化趋势、浓度水平、构成、来源以及粒径分布,在此基础上选取特殊采样日分析了重污染、秸秆燃烧以及春耕期的离子组成以及粒径分布的差异.结果表明,阜康细粒子、粗粒子中总水溶性无机离子(TWSI)在非采暖期和采暖期的浓度分别为11.17、12.68μg·m-3和35.98、22.22μg·m-3;非采暖期的SO2-4主要来自盐碱土扬尘,NO-3和NH+4主要来自农田土壤扬尘,而采暖期的SO2-4、NO-3和NH+4主要来自煤炭等化石燃料燃烧.8种离子在非采暖期和采暖期均呈现双峰分布,相对于非采暖期,采暖期的SO2-4、NO-3和NH+4在细粒径段的峰值发生了粒径增长,SO2-4和NH+4在粗粒径段的峰值出现在3.3~4.7μm处.重污染期间二次污染严重,离子主要分布在1.1~2.1μm处;秸秆燃烧期受生物质燃烧影响大,离子主要分布在<0.65μm粒径段;春耕期土壤扬尘较多,离子主要分布在>3.3μm粒径段.  相似文献   

8.
深圳大气气溶胶中水溶性有机物粒径分布特征   总被引:2,自引:0,他引:2  
建立了雾化器-气溶胶化学组分检测仪(ACSM)联用的分析方法,实现了对2013年春季深圳MOUDI多级采样膜(0.056~18μm)中WSOM与无机离子组分的同时测定.结果表明:所测得的水溶性颗粒物总质量浓度变化范围为(17.4±2.1)μg/m3,其中有机物和硫酸盐是最主要的两种化学组分;粗、细粒子中的WSOM主要以二次来源为主,且大部分粗粒子中的WSOM可能来源于非均相反应;不同粒径范围WSOM的氧化态(以O/C计)估计值在0.46~1.4范围内,平均为0.96,对应的有机物/有机碳比(OM/OC)估计值在1.8~2.9范围内,平均为2.4,粗粒子中WSOM的O/C比细粒子更高,暗示粗粒子中WSOM可能经历了更多的老化过程.  相似文献   

9.
为了解济南市大气颗粒物的粒径分布特征,于2009年10月利用多级撞击式颗粒物采样器(MOUDI)进行了大气颗粒物采集,采用离子色谱仪分析了其中水溶性离子浓度.结果表明,SO42-、NO3-、NH4+和Ca2+是主要的水溶性离子,浓度总和约占总水溶性离子浓度的92%.SO42-、NO3-、NH4+、K+和Cl-浓度随时间变化较为显著,浓度变化主要原因是受风速以及气流来源方向的影响.SO42-和NH4+主要集中在细粒子中,其浓度呈单模态分布,随着颗粒物中含量的升高其峰值从0.32~0.56 μm粒径段逐渐移动到1~1.8 μm粒径段.NO3-浓度呈双峰分布,细粒子中的NO3-随着浓度的升高峰值从0.56~1μm粒径段移动到1~1.8μm粒径段,粗粒子中的峰值出现在3.2~5.6μm粒径段. NH4+可以完全中和细粒子中的SO42-和NO3-,在细粒子中主要以(NH4)2SO4和NH4NO3的形式存在.  相似文献   

10.
北京夏冬季霾天气下气溶胶水溶性离子粒径分布特征   总被引:4,自引:11,他引:4  
黄怡民  刘子锐  陈宏  王跃思 《环境科学》2013,34(4):1236-1244
为研究北京夏、冬季霾粒子中水溶性离子的粒径谱分布,并进一步分析其来源及形成机制,于2009年夏季和冬季利用惯性撞击式8级采样器(Andersen)和石英微量振荡天平(TEOM)对北京城区大气气溶胶分别进行了为期2周的连续采样和监测,并用离子色谱(IC)对气溶胶中的水溶性离子进行了分析.结果表明,夏季霾天PM10和PM2.5的质量浓度分别为(245.5±8.4)μg.m-3和(120.2±2.0)μg.m-3,冬季霾天对应的数值分别为(384.2±30.2)μg.m-3和(252.7±47.1)μg.m-3,无论夏季还是冬季,霾天大气细粒子污染均十分严重.细粒子中总水溶性离子(TWSS)的浓度霾天远高于对照天,其中霾天浓度上升较快的是SO24-、NO3-和NH4+,二次无机离子对霾天气的形成过程扮演重要作用.除NO3-外,其余7种水溶性离子夏、冬季霾天粒径谱分布一致,即,SO24-、NH4+主要分布于PM1.0以下的细粒子模态,Mg2+、Ca2+主要分布于PM2.5以上的粗粒子模态,Na+、Cl-和K+呈双模态分布;夏季霾天NO3-呈双模态分布,而冬季则主要分布于细粒子中.夏季霾天SO24-的平均质量中值粒径(MMAD)为0.64μm,SO24-主要来自远程SO2的云内反应,并且SO2表观转化率(SOR)高于对照天,使得霾天光化学反应生成的细粒子远远高于对照天气过程;冬季霾天SO24-的MMAD增至0.89μm,冬季因局地SO2排放并被非均相化学反应过程氧化为SO24-亦为北京大气细粒子的重要来源.夏、冬季霾天NO3-的MMAD分别为2.85μm和0.80μm,受到温度的影响,NO3-夏、冬季节分别以硝酸钙和硝酸铵的形式存在于粗、细粒子中.  相似文献   

11.
保定大气颗粒物中水溶性无机离子质量浓度及粒径分布   总被引:8,自引:0,他引:8  
为研究保定市大气颗粒物中水溶性无机离子的质量浓度水平、季节变化和粒径分布特征,于2010年8月—2011年8月利用Andersen分级采样器采集大气颗粒物样品,并用离子色谱分析其中的离子组成. 结果表明,细粒子(PM2.1)中主要水溶性无机离子为SO42-、NO3-和NH4+,三者质量浓度平均值分别为23.18、21.99和11.44μg/m3;粗粒子(PM>2.1)中主要水溶性无机离子为NO3-、Ca2+和SO42-,三者质量浓度平均值分别为10.60、10.39和10.14μg/m3. 细粒子中ρ(SO42-)、ρ(NO3-)、ρ(NH4+)、ρ(Cl-)和ρ(K+)的季节性变化相似,均为冬季>秋季>夏季>春季;粗粒子中ρ(NH4+)、ρ(K+)和ρ(NO3-)呈现出与细粒子不同的季节性变化趋势,ρ(NH4+)和ρ(K+)均为冬季>夏季>秋季>春季,而ρ(NO3-)则为夏季>秋季>冬季>春季. 粗、细粒子中ρ(Ca2+)和 ρ(Mg2+)的季节性变化特征相似,均为冬季最高、夏季最低. ρ(SO42-)、ρ(NO3-)、ρ(Na+)和ρ(K+)均呈双峰分布,分别在>0.43~1.1μm和>4.7~5.8μm出现峰值; ρ(NH4+)和ρ(Cl-)呈细模态单峰分布,在>0.43~1.1μm出现峰值; ρ(Mg2+)和 ρ(Ca2+)呈粗模态单峰分布,在>4.7~5.8μm出现峰值. 二次源和生物质燃烧是细粒子的主要来源,扬尘对粗粒子影响较大.   相似文献   

12.
南京市大气颗粒物中水溶性离子的粒径分布和来源解析   总被引:7,自引:26,他引:7  
薛国强  朱彬  王红磊 《环境科学》2014,35(5):1633-1643
为探讨南京市PM10、PM2.1和PM1.1中水溶性离子的季节变化和其主要来源,分别在南京市区和北郊进行了为期1 a的观测,得到了南京市城郊气溶胶的质量浓度和水溶性离子浓度并进行了来源解析.结果表明:①南京市区和北郊PM10、PM2.1、PM1.1颗粒物浓度顺序均为冬季>春季>秋季>夏季,春夏秋季节3种颗粒物浓度北郊高于市区,冬季相反.②检测的10种离子SO2-4、NO-3、Ca2+、NH+4、Cl-、K+、Na+、F-、NO-2、Mg2+总质量浓度为市区46μg·m-3,北郊39.6μg·m-3,对市区和北郊PM1.1、PM1.1~2.1、PM2.1~10的贡献率分别为56%、49.5%、20.4%和42.5%、37.9%、18.3%.③主要离子SO2-4、NO-3、NH+4、Ca2+浓度季节变化明显,在市区冬季高,夏季低,在北郊春季高,夏季低,南京地区季节性的气候变化和市郊两地的复杂下垫面和人为因素是影响离子浓度季节变化的主要原因.④NH+4、SO2-4、NO-3的前体物NH3、SO2、NOx的转化夏季主要来自汽车尾气,冬季汽车尾气和燃煤排放二者比重相近.Cl-在冬季主要来自工业排放,夏秋季和Na+一起主要来自海盐输送,Ca2+、Mg2+多为地面扬尘和建筑扬尘等地壳源,K+、F-、NO-2主要来自生物质燃烧和工业排放.  相似文献   

13.
上海市交通干道颗粒物中水溶性无机离子的污染特征   总被引:1,自引:0,他引:1  
王晓燕 《环境科学与管理》2012,37(3):140-145,162
2011年2月至2011年6月在上海市中心城区交通干道区采集29个TSP样品,对颗粒物中水溶性无机离子的化学特征进行了分析比较。结果表明:在9种水溶性无机离子(F-、Cl-、NO3-、SO42-、NH4+、Ca2+、K+、Mg2+和Na+)中,SO42-和NO3-浓度最高,分别占水溶性无机离子总浓度的36.1%和30.6%。颗粒物的阴离子/阳离子比值平均为1.12,相关性方程的斜率K为1.02,说明颗粒物偏酸性。计算的NO3-/SO42-比值的均值为0.85,表明移动排放源(机动车)对颗粒物中水溶性组分的贡献已接近于固定排放源(燃煤)。计算得出硫的转化率(SOR)均值为0.28(0.12~0.51),氮的转化率(NOR)均值为0.19(0.06~0.40),表明二次颗粒物生成是主要来源之一。  相似文献   

14.
为研究太原大气颗粒物中水溶性无机离子的质量浓度水平、季节变化和粒径分布特征,于2012年6月~2014年5月使用惯性撞击式分级采样器采集大气颗粒物样品,并用离子色谱分析了其中的水溶性无机离子组成.结果表明,PM_(1.1)、PM_(2.1)和PM_9中总水溶性无机离子浓度平均值分别为(15.39±9.91)、(21.10±15.49)和(36.34±18.51)μg·m-3.PM1.1和PM2.1中,二次离子(SO_4~(2-)、NO_3~-和NH_4~+)占总水溶性无机离子质量分数最高;PM9中SO_4~(2-)和Ca~(2+)占比较高.各粒径段中SO_4~(2-)和NH+4季节变化特征相似,均为冬夏季节高、春秋季节低;NO_3~-、K+和Cl-季节变化特征一致:冬季秋季春季夏季;Ca~(2+)和Mg~(2+)季节变化特征一致:春季冬季秋季夏季.SO_4~(2-)和NH+4为细模态单峰分布,春秋季节在0.43~0.65μm处出现峰值,而夏季出现在0.65~1.1μm处,细粒径段峰值出现由凝结模态向液滴模态转移的现象.NO_3~-为双模态离子,冬季在0.43~2.1μm出现明显细粒径段峰值,夏季在4.7~5.8μm出现明显粗模态峰值.K~+、Na~+和Cl~-为双模态离子,分别在0.43~1.1和4.7~5.8μm出现峰值;Ca~(2+)、Mg~(2+)和F-呈粗模态单峰分布,在4.7~5.8μm出现峰值.主成分分析结果显示,水溶性无机离子来源主要是二次源、燃煤、工业源、生物质燃烧和土壤尘或降尘.  相似文献   

15.
南京市大气气溶胶中部分无机离子的粒径分布   总被引:6,自引:0,他引:6       下载免费PDF全文
将气溶胶粒子(粒径Dp为0~8 5μm)分为8级,对各级粒子中的无机离子(NH+4,SO42-,NO3-,Cl-和F-)进行分析测定。结果显示,Cl-,F-和NO3-较多地分布在粗粒子中,而SO42-和NH4+则更多地分布在细粒子中。在质量浓度分布函数图上,NH4+,Cl-,F-和SO42-是双峰分布,NO3-没有表现出粒径分布的规律。SO42-对细粒子的酸碱度影响较大,其质量浓度与NH4+有较好的相关性。细粒态的NH4+大多以(NH4)2SO4形式存在。   相似文献   

16.
广州市灰霾期大气PM_(10)中水溶性离子特征   总被引:1,自引:0,他引:1  
采集广州市大气PM10样品并分别对冬夏两季灰霾和非灰霾期PM10中水溶性离子进行分析。实验表明,广州市灰霾期PM10中水溶性离子的质量浓度要高出非灰霾期4~15倍,其中NO3-浓度升幅最大。非灰霾期主要水溶性无机离子的浓度顺序为SO42->NH4+>NO3-,灰霾期为SO42->NO3->NH4+,严重灰霾期则为NO3->SO42->NH4+。非灰霾期SO42-/NO3-质量浓度比为1.78~3.57,灰霾期为1.04~1.20,而在严重灰霾期则<1,说明灰霾利于NO3-的二次转化生成。实验还表明,灰霾期PM10较非灰霾天气偏酸性,灰霾期SO2和NOx的高转化率导致SO42-和NO3-的大幅增加是加重灰霾期PM10污染的主要原因。  相似文献   

17.
为研究我国旅游城市海南省三亚市大气颗粒物浓度水平及其化学成分,于2012年6月~2014年5月,使用惯性撞击式分级采样器采集大气颗粒物样品,并利用离子色谱法分析了其中的水溶性无机离子浓度及粒径分布.结果表明,PM_(2.1)和PM_(2.1~9)中总水溶性无机离子浓度平均值分别为(8.91±7.27)μg·m~(-3)和(11.34±9.37)μg·m~(-3).PM_(2.1)中SO_4~(2-)和NH_4~+占总水溶性无机离子的质量分数比较高,二者总和达到72.2%;PM_(2.1~9)中Cl-、Ca~(2+)和Na+占比较高,三者总和为67.6%.PM_(2.1)中总水溶性无机离子浓度在冬季最高,春秋季节次之,夏季浓度最低,分别为(14.58±8.88)、(9.33±7.72)、(8.72±4.42)和(3.82±1.59)μg·m~(-3);PM_(2.1~9)中总水溶性无机离子浓度夏季最高(17.14±16.00)μg·m~(-3),冬季次之(10.59±3.80)μg·m~(-3),春季和秋季变化差异不大,分别为(9.41±3.63)μg·m~(-3)和(8.21±3.24)μg·m~(-3).SO_4~(2-)和NH_4~+呈细粒径段为主的双模态分布,春季、夏季和秋季细粒径段峰值出现在0.43~0.65μm粒径段,而冬季则出现在0.65~1.1μm粒径段,细粒径段峰值出现由凝结模态向液滴模态转移的现象;NO~(-3)、Na+、Cl-、Ca~(2+)和Mg~(2+)呈粗粒径单峰分布,峰值出现在4.7~9μm粒径段;K+为双模态分布,细、粗粒径段峰值分别出现在0.43~0.65μm和4.7~5.8μm.三亚作为我国少数PM2.5年均值达标城市,水溶性无机离子来源主要为二次源、海盐和土壤尘及降尘.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号