首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
使用2013年PM2.5监测数据和南京气候基准站的气象资料,分析PM2.5扩散与气象条件的关系。结果表明:PM2.5质量浓度与降水量有良好的负相关关系;较大混合层厚度和不稳定的大气层结有利于PM2.5质量浓度的降低;在南京地区,PM2.5质量浓度在东北风向和西南风下相对较低,而且与风速也有较好的负相关性;较高的湿度不利于PM2.5质量浓度的降低,并会影响能见度,60%~70%的湿度区间是PM2.5污染加重的转折点。  相似文献   

2.
采用多元线性回归方法(MLR)和BP神经网络方法(BPNN),按1 h、3 h、6 h、12 h、24 h、48 h预测时长对贵港市2015—2018年PM2.5浓度建模并检验对比模型准确率。结果表明,基于MLR与BPNN都能对PM2.5浓度作预测,预测效果随着预测时长的增加而下降,MLR、BPNN模型预测结果平均绝对误差(MAE)分别为4.01μg/m3~15.48μg/m3、3.89μg/m3~15.63μg/m3。采用小波分析方法对污染物数据优化并再次建模,结果表明,小波-多元线性回归(W-MLR)模型与小波-神经网络(W-BPNN)模型均得到优化,3 h~24 h预测时长优化效果尤为显著,W-MLR、W-BPNN模型预测结果分别使MAE降低1.6%~13.5%、0.8%~9.8%,且后者预测效果优于前者。  相似文献   

3.
利用2018年261个乡镇环境空气自动监测站监测数据,结合GIS空间分析技术,对石家庄市PM10和PM2.5的时空污染特征进行了研究。结果表明,石家庄地区PM10和PM2.5污染的空间分布整体表现为西北部山区好于东南部的平原地区,主城区好于周边县(市、区)的特征。采暖期PM10和PM2.5的污染程度明显重于非采暖期。PM2.5稳定性差于PM10,PM10和PM2.5的稳定性与污染程度具有一定的负相关性,表现出污染越轻的区域稳定性越差。两者的日均值浓度变化在时间序列上呈极强正相关,且污染越重的区域时间相关性越强。与日均值相关性不同,污染程度越轻的区域PM10和PM2.5年均值的线性相关性越强。  相似文献   

4.
利用WRF-CAMx模式分析首届中国国际进口博览会(简称进博会)期间一次降雨过程对长三角地区PM2.5浓度影响,结果表明,降雨量分布区域与因降雨造成的PM2.5浓度减少量分布区域并不完全一致,湿沉降量受降雨量、PM2.5浓度和风速等多个因素共同影响。数值模拟结果表明,降雨导致浓度下降幅度排前5位的组分分别是有机气溶胶、硫酸盐、硝酸盐、铵盐和细颗粒原生气溶胶,下降幅度分别为44. 28%、16. 55%、11. 55%、9. 53%和5. 23%。结合观测资料和数值模式模拟结果可知,首届进博会期间上海本地减排和周边区域协同控制作用使PM2.5日均质量浓度降低33. 23μg/m3,因降雨引起的湿沉降作用使上海市PM2.5质量浓度降低15. 88μg/m^3。  相似文献   

5.
使用WRF Chem模式模拟分析2014年4月16日—18日一次上海市大气污染过程,探究交通减排对该市PM2.5浓度的影响。结果表明,模式较为成功地再现了污染过程中天气形势及大气污染物时空变化, PM2.5浓度模拟与观测结果IOA达到065。研究时段内交通减排使上海市PM2.5质量浓度平均减少 329 μg/m3,虹口凉城监测站受到交通减排影响最大,对小时平均质量浓度的最大影响超过26 μg/m3,超过此站PM2.5浓度的13%;PM2.5浓度越高,交通减排对上海市PM2.5浓度的影响越显著;交通减排对上海北部地区空气质量的改善效果最明显。  相似文献   

6.
通过采用后向轨迹结合聚类分析方法计算2015—2016年百色市PM2.5潜在源贡献因子(PSCF)和浓度权重轨迹(CWT),分析影响该市冬季PM2.5质量浓度的潜在源区,并探讨不同源区对PM2.5的贡献率。同时,使用CAMx模式模拟百色市各县区及周边区域对该市大气传输的影响。结果表明,影响百色市PM2.5浓度潜在源主要集中在该市和临近的河池、南宁、崇左,以及北部的贵州省;CAMx模式模拟对百色市冬季大气污染物传输的地区来源与该市大气污染物的PSCF分析和CWT分析权重较大的区域较为一致,这些区域对百色市PM2.5的贡献率达73%。  相似文献   

7.
近年来随着雾霾天气的频发和空气环境质量的不断下降,有关PM_(2.5)的研究逐渐成为研究的重点和热点。本研究利用阿克苏市2014年PM_(2.5)连续在线监测数据,对PM_(2.5)的污染现状和季节变化、月变化、日变化、昼夜变化规律进行探讨和分析。结果表明,阿克苏市PM_(2.5)质量浓度平均值春季最高,其次为冬季,夏季最低。春季沙尘天气和冬季采暖燃烧源是PM_(2.5)质量浓度增加的主要原因;阿克苏市PM_(2.5)质量浓度日均值为14.96~282.84μg/m3,年平均值为77.85μg/m3,是国家二级标准的1.04倍;阿克苏市PM_(2.5)质量浓度春季白天高于夜间,夏季和冬季白天低于夜间。  相似文献   

8.
2018年11月5—7日,韩国首尔出现了一次PM2.5污染过程。利用拉格朗日轨迹分析(HYSPLIT)模型分析了首尔峰值浓度气团的来源,结合污染物监测和气象资料,定性分析了中国对韩国浓度高值可能的影响及其程度。利用嵌套网格空气质量预报模式(NAQPMS)及其耦合的在线污染来源追踪模块进行了污染来源解析和敏感性测试,分别计算了同一时期中韩两国相互间的PM2.5传输贡献。结果显示:2018年11月5—7日,中国对韩国首尔污染过程的日均贡献不足10%;此次污染过程后期,首尔的污染气团对上海PM2.5浓度峰值产生了影响。  相似文献   

9.
为了解春节期间烟花爆竹燃放对乌鲁木齐市区PM2.5及其组分的影响,利用超级站在线监测仪器(包括颗粒物分析仪、在线离子色谱、激光雷达和重金属分析仪)对环境空气中的PM2.5浓度、颗粒物水溶性离子和重金属浓度进行连续监测.结果表明,大量烟花爆竹的集中燃放造成了PM2.5短时严重污染,最高质量浓度达到了423μg/m3.烟花...  相似文献   

10.
通过应用HYSPLIT、MeteoInfo模型,计算2017—2021年秋冬季抵达郴州地区72 h的后向气流轨迹并进行轨迹聚类、潜在源贡献因子(PSCF)和浓度权重轨迹(CWT)分析,探讨郴州市PM2.5传输特征及污染潜在源分布。结果表明,郴州市秋冬季PM2.5潜在源区主要分布在北偏东方向,以近距离输送为主,频率最高的是从咸宁市通城县经岳阳市平江县、株洲地区的短距离轨迹,其频率为34.17%;WPSCF高值带起源于河南省,经湖北、平江、江西等地区,最终到达郴州。WCWT分析结果得出,PM2.5污染趋势与上述一致,影响范围更宽,影响程度相对较轻。2017—2021年间,郴州地区污染传输通道影响逐年减小,PM2.5浓度平均下降19.7%。  相似文献   

11.
宁波市PM10、PM2.5中水溶性无机阴离子浓度水平及分布特征   总被引:4,自引:5,他引:4  
研究了宁波市PM10、PM2.5中无机阴离子浓度水平及分布特征。结果表明,PM10中Cl-为1.00μg/m3,具有较明显的海洋特征,SO24-、NO3-离子浓度为9.90、3.70μg/m3;Cl-主要存在于粒径为2.5-10μm的颗粒物中,而NO3-、SO42-主要存在于PM2.5中,成为PM2.5的重要组成部分。PM10中水溶性无机阴离子季节变化明显,呈冬天高,夏天低的趋势。  相似文献   

12.
One-minute PM2.5 concentration was obtained with LD-5C pocket microcomputer laser dust instrument from Dec. 15th, 2005 to Jan. 16th, 2006 and Mar. 17th to Apr. 28th, 2006 in Beijing. The concentration of SO2, NO2, O3, CO, and PM10 from Jan. 1st, 2001 to Dec. 31st, 2004 were obtained from the conversion of air pollution index. Results showed that all the pollutants showed cyclic characteristics. The longer yearly cycles was shown from SO2, NO2, O3, CO, and PM10, as the sampling time was 4-year long and daily collected. The shorter hourly and daily cycle was shown from 1-min PM2.5, as the sampling time was about 1-month long and one collected at 1 min. The spectral density analysis confirmed this from the periodogram graphs. The longer yearly cycle (365, 180 days), the seasonal cycle (120, 60–90 days), and monthly cycle (21, 23, 27 days) of SO2, NO2, CO, O3, and PM10 were obviously shown. In addition, the shorter weekly cycle of 5–7 days is obviously shown, too. The shorter hourly cycle (8–12, 4–6, 3, 1–2 h, 20 min) of 1-min PM2.5 was also indicated from spectral density analysis. Two major factors contribute the 1-min PM2.5 cycles, i.e., the meteorological factors and source effects. Both the relative humidity and dew point showed consistent variation with PM2.5, but the wind speed showed inverse variations with PM2.5. Furthermore, the spectral density analysis of the meteorological factors (4–5, 2–2.5, 1–1.5 days, 12, 6–8, 3 h) may partially explain the cycles of PM2.5. As for the sources effects, it can be shown from the strong dust storm of April 16–18th, 2006. PM2.5 constantly increased tens and even hundreds of times high concentration within a few minutes due to the intensity of the dust sources.  相似文献   

13.
基于遥感数据,利用多元线性回归模型研究地面监测的PM_(2.5)质量浓度数据与AOD、气象数据及地面植被覆盖等数据的关系,空间精细化反演江苏省PM_(2.5)质量浓度分布。结果表明,AOD、气象数据及地面植被覆盖数据能较好地反演出PM_(2.5)质量浓度时空分布特征;江苏全省PM_(2.5)质量浓度呈现出冬高秋低、春夏居中的季节变化规律;春、冬季PM_(2.5)质量浓度的高值区集中在苏锡常、宁镇扬及泰州、南通等东南沿海的城市,而在靠近西北内陆的盐城、连云港、徐州、淮安、宿迁PM_(2.5)质量浓度较低,夏、秋季呈现出相反的态势。  相似文献   

14.
乌鲁木齐市大气PM2.5中重金属元素含量和富集特征   总被引:4,自引:0,他引:4  
利用PM2.5/PM10便携式采样器采集了乌鲁木齐市5个功能区PM2.5,样品,用TAS-990石墨炉原子吸收光谱仪检测了PM2.5样品中Cd、Cu、Ni、Pb、Mn的含量。结果表明,乌鲁木齐大气PM2.5质量浓度变化趋势是冬季采暖盛期〉秋季采暖初期〉春季停暖初期〉夏季停暖期。参照《环境空气质量标准》(GB3095—2012)中的二级标准,采样期间卡子湾水泥厂区样品全部超标,其余4个采样点样品在冬季采暖盛期也全部超标,部分样品在非采暖期超标。富集因子法分析表明,乌鲁木齐市5个采样区PM2.5样品中Ni、Cu、Cd、Pb污染主要来自于人类活动,Mn则来源于地壳物质。  相似文献   

15.
以西安为研究区域,为探究气象因子对PM2.5浓度的影响,采集2017-2019年空气质量与气象因子数据,改进k-Means聚类算法,形成严重污染、重度污染、中度污染、轻度污染共4个PM2.5浓度与气象因子样本簇集。分析簇集数据分布,选择Spearman相关性分析方法,确定影响PM2.5浓度的气象因子;定义PM2.5凸显性条件,给出幅度特征FOA、浮动特征FOF和凸显特征FOH,构建三维空间,确定气象因子对PM2.5影响的大小,进而建立气象因子对PM2.5浓度的影响分析方法。比较多元线性回归和随机森林回归方法,结果表明:该方法提高了分析效率,且无需考虑因子选取和表达,能有效确定影响PM2.5浓度的气象因子种类及影响程度。在低温、高湿、高压和相对静风的气象条件下,空气中颗粒物难以扩散和输送,使西安市PM2.5浓度升高。严重污染、重度污染和中度污染中,PM2.5浓度与相对湿度呈显著正相关,与风速、气温呈显著负相关,且影响大小依次为相对湿度>风速>气温;轻度污染中,PM2.5浓度与相对湿度、气压呈显著正相关,与风速、气温呈显著负相关,且影响大小依次为气温>相对湿度>气压>风速。  相似文献   

16.
Systematic sampling and analysis were performed to investigate the dynamics and the origin of suspended particulate matter smaller than 2.5 μm in diameter (PM(2.5)), in Beijing, China from 2005 to 2008. Identifying the source of PM(2.5) was the main goal of this project, which was funded by the German Research Foundation (DFG). The concentrations of 19 elements, black carbon (BC) and the total mass in 158 weekly PM(2.5) samples were measured. The statistical evaluation of the data from factor analysis (FA) identifies four main sources responsible for PM(2.5) in Beijing: (1) a combination of long-range transport geogenic soil particles, geogenic-like particles from construction sites and the anthropogenic emissions from steel factories; (2) road traffic, industry emissions and domestic heating; (3) local re-suspended soil particles; (4) re-suspended particles from refuse disposal/landfills and uncontrolled dumped waste. Special attention has been paid to seven high concentration "episodes", which were further analyzed by FA, enrichment factor analysis (EF), elemental signatures and backward-trajectory analysis. These results suggest that long-range transport soil particles contribute much to the high concentration of PM(2.5) during dust days. This is supported by mineral analysis which showed a clear imprint of component in PM(2.5). Furthermore, the ratios of Mg/Al have been proved to be a good signature to trace back different source areas. The Pb/Ti ratio allows the distinction between periods of predominant anthropogenic and geogenic sources during high concentration episodes. Backward-trajectory analysis clearly shows the origins of these episodes, which partly corroborate the FA and EF results. This study is only a small contribution to the understanding of the meteorological and source driven dynamics of PM(2.5) concentrations.  相似文献   

17.
采用Pearson相关系数分析了2013—2016年3大典型城市北京、南京和广州的ρ(PM_(2.5))与各气象因子的关系。结果表明,3个城市ρ(PM_(2.5))与各风速因子最大的相关系数依次为-0.44,-0.29和-0.37,与各气温因子最大的相关系数依次为-0.44,-0.33和-0.37,气压与南京和广州的ρ(PM_(2.5))正相关,气压因子最大的相关系数分别为0.25和0.34,湿度与北京ρ(PM_(2.5))正相关,与广州ρ(PM_(2.5))负相关,湿度因子最大的相关系数分别为0.49和-0.36,日照时数与北京ρ(PM_(2.5))相关系数为-0.46,降水量与南京和广州ρ(PM_(2.5))相关系数分别为-0.20和-0.24;采用逐步线性回归方法建立城市次日ρ(PM_(2.5))与气象因子的预测模型,复合相关系数分别为0.722 8,0.770 6和0.809 9。模型预测3个城市2016年PM_(2.5)年均值分别偏高4,5和3μg/m3,日均值平均相对误差为±45.6%,±32.9%和±26.0%,模型对高ρ(PM_(2.5))普遍低估。  相似文献   

18.
徐锋 《干旱环境监测》2012,26(2):81-84,111
利用乌鲁木齐市PM2.5//PM10自动监测数据,分析PM2.5与PM10的浓度分布特征和时间变化规律。结果表明,按照《环境空气质量标准》(二次征求意见稿)的标准限值,乌鲁木齐市冬季PM2.5污染重于PM10。PM2.5浓度为0.164mg/m3,超过二级年标准限值的3.7倍,超标率为73.9%。PM2.5浓度日变化曲线昼高夜低,呈单峰型,峰值出现在13:00~14:00(北京时间)。PM10中PM2.5所占比例较高,PM2.5/PM10为0.79,相关分析和检验显示PM2.5与PM10的线性相关显著,相关系数为0.92。  相似文献   

19.
杭州市大气PM2.5和PM10污染特征及来源解析   总被引:10,自引:0,他引:10  
2006年在杭州市两个环境受体点位采集不同季节大气中PM2.5和PM10样品,同时采集了多种颗粒物源类样品,分析了其质量浓度和多种化学成分,包括21种无机元素、5种无机水溶性离子以及有机碳和元素碳等,并据此构建了杭州市PM2.5和PM10的源与受体化学成分谱;用化学质量平衡(CMB)受体模型解析其来源。结果表明,杭州市PM2.5和PM10污染较严重,其年均浓度分别为77.5μg/m3和111.0μg/m3;各主要源类对PM2.5的贡献率依次为机动车尾气尘21.6%、硫酸盐18.8%、煤烟尘16.7%、燃油尘10.2%、硝酸盐9.9%、土壤尘8.2%、建筑水泥尘4.0%、海盐粒子1.5%。各主要源类对PM10贡献率依次为土壤尘17.0%、机动车尾气尘16.9%、硫酸盐14.3%、煤烟尘13.9%、硝酸盐粒8.2%、建筑水泥尘8.0%、燃油尘5.5%、海盐粒子3.4%、冶金尘3.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号