首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
基于2019年三亚城区站点PM2.5中水溶性离子在线观测数据,分析了水溶性离子的质量浓度水平、不同时间尺度和不同PM2.5浓度下的特征,探讨了气象因子对离子组分的影响,通过主成分分析(PCA)解析来源.结果表明:2019年三亚城区总水溶性离子(TWSI)质量浓度为8.173 μg·m-3,占ρ(PM2.5)的58.4%,各离子质量浓度大小依次为:ρ(SO42-) > ρ(NO3-) > ρ(K+) > ρ(NH4+) > ρ(Na+) > ρ(Cl-) > ρ(Ca2+) > ρ(F-) > ρ(Mg2+) > ρ(NO2-),其中二次离子SO42-、NO3-、NH4+(SNA)和K+为主要离子组分,占总水溶性离子的80.0%,海盐粒子Na+及Cl-之和占比为14.7%,且与风速呈显著正相关;TWSI季节浓度变化特征明显,秋季最高,春冬季次之,夏季最低,主要与秋冬季风速较大、主导风向转为东北风,易受外来传输有关;SO42-在各个季节均是浓度及占比最高的离子,硫氧化率(SOR)的日均值均大于0.1,存在显著的SO2向SO42-转化的过程;PCA分析结果表明三亚城区水溶性离子主要受海洋源、二次源及生物质燃烧源的影响.  相似文献   

2.
2014年10月至11月间,在北京城区开展PM_(2.5)监测并对其中的水溶性离子进行离线及在线分析.其中NO_3~-、SO_4~(2-)和NH_4~+在不同观测阶段均是PM_(2.5)中的主要离子,APEC期间三者总浓度为(26.8±22.5)μg·m~(-3),占PM2.5质量浓度的(41.7±8.5)%,占所测水溶性离子组分的(84.7±5.0)%;APEC期间NO-3浓度水平较高,对PM_(2.5)贡献最大.对APEC期间水溶性离子的累积趋势研究发现,NO_3~-、SO_4~(2-)、NH_4~+和Cl~-均经历了3个不同的累积过程,除气象条件外,本地源排放及区域污染引起的累积效应仍不可忽视.对颗粒物酸性特征研究发现,不同观测期间,颗粒物中主要水溶性离子浓度虽有不同,但北京秋末冬初颗粒物无明显酸化特征.  相似文献   

3.
泉州市大气PM2.5中水溶性离子季节变化特征及来源解析   总被引:2,自引:0,他引:2  
为掌握泉州市大气PM_(2.5)中无机水溶性离子的季节变化特征,于2014年3月~2015年1月同步采集了泉州市5个采样点共116个PM_(2.5)样品.用离子色谱法分析了PM_(2.5)中Na~+、NH_4~+、K~+、Ca~(2+)、Mg~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)等9种水溶性无机离子.观测期间,总水溶性离子浓度季节变化特征为春季(14.24±6.43)μg·m~(-3)冬季(8.54±7.61)μg·m~(-3)夏季(4.10±2.67)μg·m~(-3)秋季(3.91±2.58)μg·m~(-3);SO_4~(2-)、NO_3~-和NH_4~+(SNA)是PM_(2.5)中主要的3种离子,占水溶性离子总质量浓度比例分别为春季(90.3±3.3)%、夏季(68.8±11.7)%、秋季(78.9±7.1)%和冬季(74.0±18.4)%,说明春季二次污染较为严重;PM_(2.5)中阴、阳离子电荷平衡分析显示,阴离子相对亏损,大气细颗粒物组分呈弱碱性;春、冬季NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3等形式存在,而夏、秋季则主要以NH_4HSO_4和NH_4NO_3形式存在;PMF源解析结果表明,泉州市大气PM_(2.5)中水溶性离子主要来自海盐、二次源、建筑扬尘、垃圾焚烧源和生物质燃烧源.  相似文献   

4.
杭州市PM2.5中水溶性离子的污染特征及其消光贡献   总被引:1,自引:3,他引:1  
对杭州市2013年大气PM_(2.5)进行采样分析,探讨了其中水溶性离子的污染特征和消光贡献.杭州市PM_(2.5)中总水溶性离子的质量浓度为37.5μg·m~(-3),占PM_(2.5)质量浓度的44.4%,二次离子SNA(SO_4~(2-)、NO_3~-和NH_4~+)是水溶性离子的主要成分,共占到水溶性离子的83.4%.PM_(2.5)和主要水溶性离子的质量浓度都在冬季最大,夏季最低,夏秋季水溶性离子占PM_(2.5)的比值明显高于冬春季,而SNA在总水溶性离子中的比例4个季节非常接近.燃料燃烧和汽车尾气排放导致的二次离子生成,对杭州市PM_(2.5)贡献最大.SOR和NOR的年平均值分别为0.27和0.15,SO_2在大气中的转化率大于NO_x,SOR和NOR与相对湿度都呈现出明显正相关,非均相氧化过程对SO_4~(2-)和NO_3~-的生成具有重要贡献.气溶胶中[NO_3~-]/[SO_4~(2-)]的年平均值为0.63,主要受到燃煤排放的影响.霾天随着霾污染等级的逐渐加重,PM_(2.5)、水溶性离子和SNA的浓度都逐渐增大,SOR和NOR值也不断升高,霾天稳定的天气条件,能有效促进污染物的积累和二次转化.PM_(2.5)和SNA的质量浓度与大气消光系数都呈现出明显正相关,使用IMPROVE公式对不同化学组分消光系数的计算结果能够基本反映出气溶胶对大气散射的变化趋势,其结果显示SNA对大气总消光系数的贡献达60.8%.SNA的消光系数冬季最高,夏季最低,随着霾污染等级的加重,SNA的消光系数和对总消光的贡献比例也逐步增加.  相似文献   

5.
苏州市PM2.5中水溶性离子的季节变化及来源分析   总被引:2,自引:27,他引:2  
2015年在苏州市城区采集大气细颗粒物PM_(2.5)样品共87套,用重量法分析了PM_(2.5)的质量浓度,离子色谱法分析了颗粒物中F-、Cl-、NO_3~-、SO_4~(2-)、Na~+、NH_4~+、K~+、Mg~(2+)和Ca~(2+),共9种水溶性无机离子.观测期间,苏州市PM_(2.5)的年均质量浓度为(74.26±38.01)μg·m-3,其季节特征为冬季春季秋季夏季;9种水溶性离子的总质量浓度为(43.95±23.60)μg·m~(-3),各离子的浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Na~+Cl~-K~+Ca~(2+)F-Mg~(2+);SNA(SO_4~(2-)、NO_3~-和NH_4~+三者的简称)是最主要的水溶性离子;SO_4~(2-)、NO_3~-和NH_4~+三者之间具有显著的相关性,它们在PM_(2.5)中主要是以NH_4NO_3和(NH_4)_2SO_4的结合方式存在.苏州市PM_(2.5)中水溶性离子的主要来源包括工业源、燃烧源、二次过程和建筑土壤尘等.  相似文献   

6.
为探讨盘锦市冬季PM_(2.5)水溶性离子污染特征和来源,于2017年1月采集3个点位的PM_(2.5)样品,用ICS-900离子色谱仪分析了8种离子(Na~+、Mg~(2+)、Ca~(2+)、K~+、NH_4~+、SO_4~(2-)、Cl~-和NO_3~-).开展了PM_(2.5)和离子浓度特征分析、硫氧化率(SOR)和氮氧化率(NOR)计算、离子平衡计算、主成分分析等.结果表明:盘锦市冬季PM_(2.5)浓度与水溶性离子浓度特征为文化公园开发区第二中学;SO_4~(2-)、NO_3~-、NH_4~+质量浓度较大;冬季硫氧化率(SOR)和氮氧化率(NOR)的均值均大于0.10,说明SO_4~(2-)、NO_3~-主要由SO_2和NO_x转化而来;阳离子和阴离子当量相关性较强;开发区整体上呈现出中性,文化公园与第二中学呈现出偏碱性;盘锦市PM_(2.5)中水溶性离子主要来源于煤烟尘,生物质燃烧,二次粒子以及扬尘.  相似文献   

7.
依托河北省灰霾污染防治重点实验室,对2019年11月26日—12月31日石家庄市大气PM2.5中的NO3-和SO42-进行连续在线观测,研究NO3-和SO42-与环境空气相对湿度的相关性,解析冬季发生PM2.5重污染天气的RH阈值.观测期间,RH为10%~60%时,NO3-的浓度与RH呈显著正相关,为PM2.5中浓度最高的无机水溶性离子.RH超过70%后,NO3-与RH呈负相关,NO3-浓度和NOR开始下降.SO42-浓度与RH在整个湿度区间均呈正相关.RH低于50%时,SO2向SO42-的转化以气相反应为主.RH高于50%以后,颗粒物达到潮解点,SO2的主要反应转入液相,转化速率加快,SO2液相反应贡献逐渐增加至64.6%.RH超过70%后,SO42-成为PM2.5中浓度最高的无机水溶性离子.RH超过PM2.5潮解点以后,NO3-和SO42-大量合成,推高PM2.5环境浓度,易于形成重污染天气.  相似文献   

8.
为了探明昆山市不同污染条件下PM2.5中水溶性无机离子的污染特征以及本地源排放占主导时对污染过程的贡献,本研究使用昆山市2017年3月—2018年2月期间PM2.5、水溶性无机离子及其气态前体物数据,分别探讨了水溶性无机离子及其气态前体物在污染天气和清洁天气情况下的变化特征,揭示了它们在污染天气和清洁天气下的变化机制.同时结合周围城市PM2.5浓度筛选出昆山市秋、冬季局地污染事件,利用主成分分析(principle component analysis,PCA)方法对筛选出的局地污染事件中的水溶性无机离子数据进行了来源解析,定量评估了本地源排放占主导时不同水溶性无机离子对灰霾污染事件过程中PM2.5浓度的贡献.结果表明:①SO42-、NO3-、NH4+(合称SNA)是PM2.5的重要组分,且其相对贡献随着大气污染加重而变化.3种离子在清洁和污染条件下对PM2.5的相对贡献分别是49.4%~62.3%和52.7%~65.9%.在3种主要的水溶性无机离子中,NO3-浓度最高,其次是SO42-和NH4+.随着污染加重,SO42-的贡献率下降,而NO3-的贡献率上升.②污染天气下3种离子日变化规律不同,且存在明显季节差异.其中秋冬季SO42-和NH4+与各自气态前体物变化趋势一致且为单峰型;NO3-为单峰型而其前体物则为双峰型.另外,NO3-与NH4+日变化趋势较为一致,表明昆山地区SNA多以NH4NO3形式存在.③2017—2018年秋冬季由本地源排放占主导的污染天气下,PM2.5的主要来源是二次气粒转化、建筑扬尘、生物质燃烧和燃煤;除了Mg2+和Ca2+,其他水溶性离子浓度均低于非本地源排放占主导的污染天气下的浓度.  相似文献   

9.
为探究遵义市PM2.5中水溶性离子的污染特征及来源,于2018年6月~2019年5月采集了遵义市两个采样点共120个PM2.5样品,并利用离子色谱法对样品中8种水溶性离子进行了分析。结果表明:采样期间,遵义市PM2.5平均值为47.6±19.3 μg/m3,呈现冬春高、夏秋低的季节变化特征;8种水溶性离子平均质量浓度顺序为SO42- > NO3- > NH4+ > Ca2+ > K+ > Cl- > Na+ > Mg2+,平均值为13.74 μg/m3,水溶性离子质量浓度的季节变化与PM2.5变化趋势相似;SO42-、NO3-、NH4+(SNA)是PM2.5中主要水溶性离子,占比为83.8%,说明遵义市大气PM2.5二次污染较严重;相关性分析表明,PM2.5中NH4+主要以(NH42SO4、NH4HSO4的形式存在,部分以NH4NO3的形式存在;[NO3-]/[SO42-]小于1,表明固定源为主要污染源;主成分分析结果表明,PM2.5中水溶性离子主要来源于燃煤、交通混合源、土壤、建筑扬尘及农业源。  相似文献   

10.
成都市城区PM2.5中二次水溶性无机离子污染特征   总被引:1,自引:1,他引:1  
李友平  周洪  张智胜  王启元  罗磊 《环境科学》2014,35(12):4439-4445
2009年4月~2010年1月在成都市城区采集131个PM2.5样品,应用离子色谱法对PM2.5中二次水溶性无机离子(NH+4、NO-3和SO2-4)含量进行分析,并探讨其污染特征.结果表明,PM2.5中NH+4、NO-3和SO2-4的平均浓度值分别为(10.4±8.6)、(19.7±14.6)和(32.8±21.8)μg·m-3,分别占PM2.5质量的(5.5±2.8)%、(11.1±3.5)%和(19.3±6.4)%,三者总和占PM2.5质量浓度的(35.9±12.7)%.PM2.5中NH+4、NO-3和SO2-4的季节变化特征明显,夏、冬两季NH+4、NO-3和SO2-4的浓度均为SO2-4>NO-3>NH+4,其总和占PM2.5质量浓度的百分比为冬(44.3%)>夏(39.4%).相关分析结果显示,NH+4、NO-3和SO2-4在成都主要以NH4HSO4、(NH4)2SO4和NH4NO3形式存在;NO-3/SO2-4比值表明,成都市大气中硫和氮的主要来源以固定源为主;硫氧化速率和氮氧化速率的年均值分别为:0.33±0.12和0.19±0.09,表明成都市PM2.5中SO2-4和NO-3主要经二次转化形成.  相似文献   

11.
2017~2018年北京大气PM2.5中水溶性无机离子特征   总被引:4,自引:7,他引:4  
为探究近年来北京市空气质量持续改善过程中PM2.5及其中水溶性无机离子(WSIIs)特征,于2017~2018年在北京城区进行了连续1 a的PM2.5样品采集,对其中9种主要WSIIs进行了全面分析.结果表明,北京市PM2.5年均浓度为(77.1±52.1)μg ·m-3,最高和最低值分别出现在春季[(102.9±69.1)μg ·m-3]和夏季[(54.7±19.9)μg ·m-3].WSIIs年均浓度为(31.7±30.1)μg ·m-3,对PM2.5贡献比例为41.1%,季节贡献特征为:秋季(45.9%) > 夏季(41.9%) > 春季(39.9%) ≥ 冬季(39.2%).SNA是WSIIs的重要组成,春、夏、秋和冬季在总WSIIs中的占比分别可达86.0%、89.5%、74.6%和73.0%.随温度升高,NO3-和SO42-分别呈现出了先升高后降低以及波动性升高的趋势;而当相对湿度低于90%时,2种离子浓度均随相对湿度增加而升高,反映了光化学和液相过程对2种离子组分的贡献差异.随污染加重,WSIIs整体贡献比例大幅升高,且各类WSIIs演化特征各异,其中,NO3-浓度和贡献均持续升高,而SO42-和各类源自扬尘的离子组分(Mg2+、Ca2+和Na+)贡献降低.观测期间WSIIs主要来源包括二次转化、燃烧源和扬尘源,对燃煤和机动车的管控是其减排的重要途径.后向轨迹分析表明,源自北京市南部和西部的气团对应着较高的PM2.5浓度和WSIIs占比,且二次离子贡献显著;而源自西北和北部的气团对应的PM2.5浓度和WSIIs占比则较低,但Ca2+贡献较高.  相似文献   

12.
北京城区大气PM_(2.5)主要化学组分及污染特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解北京城区大气PM2.5主要化学组成特征,于2012年8月─2013年7月对城区石景山、东四和通州3个采样点及城区对照点定陵和区域传输点榆垡开展为期1 a的PM2.5组分研究,共获得268组样品.结果表明:城区平均质量浓度大于1.0μg/m3的组分有OC、NO3-、SO42-、NH4+、EC、Cl-、Si、Ca、Al、K+,其中ρ(OC)、ρ(NO3-)、ρ(SO42-)、ρ(NH4+)分别为(22.2±17.1)、(21.5±25.9)、(19.8±23.7)、(14.3±16.8)μg/m3,分别占ρ(PM2.5)的17.9%、17.3%、15.9%、11.5%,城区各主要组分的平均质量浓度明显大于对照点;城区各采样点之间主要组分所占比例相差不大,与城区对照点、区域传输点差异明显;春、夏、秋、冬四季城区采样点的主要组分均为OC、NO3-、SO42-、NH4+,这4种组分质量浓度之和分别占各季ρ(PM2.5)的62.5%、54.2%、46.0%、62.7%,其中春季ρ(NO3-)、夏季ρ(SO42-)、秋冬季的ρ(OC)相对较高;北京城区各采样点均受SOC影响较大,OC/EC〔ρ(OC)/ρ(EC)〕的平均值为5.7,城区SNA(二次无机气溶胶)占ρ(PM2.5)的比例(15.0%~53.1%)和NO3-/SO42-〔ρ(NO3-)/ρ(SO42-)〕(0.47~1.36)均随空气质量指数上升而增加,同时观测期间北京城区PM2.5中NO3-/SO42-的平均值为1.14,较往年明显增大,表明目前北京城区的PM2.5排放源逐步由以固定源为主向固定源和移动源并重的方向发展.  相似文献   

13.
为探索北京城区大气细颗粒物( PM2. 5) 及其各组分的浓度特征,于 2019 年全年在车公庄地区开展了 PM2. 5及水溶性离子、碳质组分及金属元素的连续在线监测. 结果表明,2019 年北京城区 ρ( PM2. 5) 平均值为 46. 7 μg·m- 3,化学组分中 ρ[有机物( OM) ]、ρ( NO3-) 、ρ( SO42-) 、ρ( NH4+) 、ρ( EC) 、ρ( Cl-) 、ρ( 微量元素) 和 ρ( 地壳物质) 分别为 9. 1、11. 1、5. 7、5. 4、1. 4、0. 9、1. 6 和 7. 3 μg·m- 3,SNA ( SO42-、NO3-和 NH4+) 合计占到了...  相似文献   

14.
夏季广州城区细颗粒物PM_(2.5)和PM_(1.0)中水溶性无机离子特征   总被引:11,自引:13,他引:11  
于2008年7月1~31日在广州城区每天采集PM2.5和PM1.0样品.利用离子色谱分析了样品中Na+、NH4+、K+、Mg2+、Ca2+、F-、Cl-、NO3-和SO24-等9种离子组分质量浓度,并同步收集气象因子、大气散射系数、大气能见度以及SO2、NO2、O3气体污染物质量浓度等数据.结果表明,PM2.5和PM1.0中水溶性无机离子总浓度分别为(25.5±10.9)μg·m-3和(22.7±10.5)μg·m-3,分别占PM2.5和PM1.0质量浓度的(47.9±4.3)%和(49.3±4.3)%.SO42-占PM2.5和PM1.0中质量浓度百分比最高,分别为(25.8±4.0)%和(27.5±4.5)%.较高的温度和O3浓度有利于SO24-的生成,较高相对湿度有利于NO3-的生成.PM2.5和PM1.0中亲水性较强的SO42-、NH4+和NO3-对散射系数和能见度影响较大.  相似文献   

15.
为了探讨华东高山背景区域春季颗粒物中水溶性组分的特征,2014年3月至5月在国家大气背景监测福建武夷山站采集PM2.5及PM2.5~10样品,获取了水溶性无机离子组分,并同步收集气象因子及SO2、NO2、O3、PM10和PM2.5等污染物质量浓度数据.结果表明,春季武夷山背景点PM2.5和PM2.5~10中水溶性无机离子总浓度分别为(8.3±2.8)μg·m-3和(1.3±0.9)μg·m-3,分别占PM2.5和PM2.5~10质量浓度的(43.7±7.5)%和(24.4±6.4)%.SO2-4占PM2.5质量浓度百分比最高,为(32.4±6.3)%;NO-3占PM2.5~10质量浓度百分比最高,为(8.9±3.7)%.春季武夷山背景点硫酸盐主要存在于细颗粒物中,且以(NH4)2SO4和K2SO4的形式存在,粗颗粒中的硝酸盐则主要以Mg(NO3)2的形式存在.春季武夷山背景点水溶性无机离子主要来源于沙尘、海盐及高污染区域的远距离输送.  相似文献   

16.
北京城区大气PM2.5主要化学组分构成研究   总被引:1,自引:2,他引:1  
2012年8月至2013年7月期间,对北京市城区石景山、车公庄、东四和通州这4个点位开展为期一年的PM2.5化学组分研究,共获得样本220组,使用化学质量重构方法进行组分重构研究.结果表明,通过化学质量重构方法获得的PM2.5质量和实际测定PM2.5质量浓度具有很好的相关性,相关系数为0.95,其中春季、秋季和冬季相关系数均大于0.95以上,夏季稍差(0.77);采样期间4个点位的PM2.5主要组分OM、EC、SO2-4、NO-3、NH+4、Cl-、地壳元素、微量元素的质量浓度分别为31.4、3.8、19.9、21.6、14.4、4.0、15.4、2.9μg·m-3,分别占总组分的25.1%、3.0%、15.9%、17.2%、11.5%、3.2%、12.3%、2.3%,除地壳物质外各组分呈东高西低的趋势;2013年1月11日至14日重污染期间,OM、SO2-4、NO-3、NH+4的浓度是全年平均的1.9、5.0、3.2、4.2倍,SO2-4成为本次污染过程中最主要的组分.采暖期和非采暖期城区PM2.5最大的组分均为OM,采暖期相对非采暖期OM、NH+4、NO-3、SO2-4均有较大增幅,但地壳物质和EC相差不大,两个时期差异最大的组分为具有较强燃煤指示性的Cl-(4.4倍).对于化学质量重构结果的未知组分,其中城区PM2.5中水份约占6.0%,夏季颗粒物的水份最大(6.5%),春季和冬季相当,秋季较少(3.7%).  相似文献   

17.
为研究沈阳市冬季PM2.5和水溶性离子的污染特征,使用URG-9000D在线监测系统于2018年冬季对大气颗粒物和气体组分进行连续采样.结果表明,采样期间沈阳市PM2.5的平均质量浓度为80.67 μg·m-3,总水溶性离子质量浓度变化范围为2.68~132.79 μg·m-3.与清洁天相比,污染天NO3-、SO42-和NH4+(SNA)占比明显增加,占到PM2.5的43.7%.静稳天气时SO2短时间内的迅速累积使得沈阳市冬季大气PM2.5有暴发性增长现象.Pearson相关性分析可知,SNA、Cl-与PM2.5之间的相关系数均达0.78以上,表明沈阳市冬季PM2.5的主要贡献组分为SNA和Cl-.PMF源解析表明沈阳市冬季污染物来源主要包括二次反应源、燃煤和生物质燃烧源以及扬尘源.  相似文献   

18.
为了研究宿迁市PM2.5中水溶性无机离子的季节特征和来源,于2017年5月至2018年1月在宿迁市水汽通道上的3个监测点位采集了171份PM2.5样品,分析了PM2.5质量浓度以及9种水溶性无机离子含量.结果表明,宿迁市PM2.5中水溶性无机离子的年均浓度为(44.08±34.61)μg·m-3,占PM2.5质量的41.8%, 9种水溶性离子浓度大小排序为ρ(NO-3)>ρ(SO42-)>ρ(NH+4)>ρ(Cl-)>ρ(Na+)>ρ(Ca2+)>ρ(K+)>ρ(F-)>ρ(Mg2+),其中NO-3、 SO...  相似文献   

19.
2013年6月在北京及华北平原大城市空气污染联合观测期间,使用大流量PM2.5采样仪分昼、夜采集北京市典型城区环境空气中PM2.5样品,利用GC-MS技术对PM2.5中正构烷烃的污染水平、分布特征与来源进行分析,并且结合后向轨迹分析了远距离传输的影响.结果表明:观测期间ρ(PM2.5)为29.73~275.30μgm3,PM2.5中ρ(总正构烷烃)为50.33~143.49 ngm3.PM2.5中正构烷烃质量浓度随碳数分布呈单峰-后峰型和双峰-后高型2种;Cmax(主峰碳数)为C29或C31;CPI(碳优势指数)为1.34~6.66;LMWHMW〔ρ(C14~C24正构烷烃)ρ(C25~C36正构烷烃)〕为0.10~0.31.观测期间PM2.5中正构烷烃主要来自高等植物蜡,并且主要来自温带植物;其次来自化石燃料和生物质的不完全燃烧.观测期间来自北京市南向气团轨迹出现概率最高,影响最为突出,其次为来自东南沿海方向和内蒙古中西部方向的气团轨迹.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号