共查询到18条相似文献,搜索用时 78 毫秒
1.
蚌埠市臭氧污染评价及一次持续性污染过程分析 总被引:3,自引:2,他引:3
利用2015年1月—2018年12月近4年的国控点大气污染物监测数据和同期气象观测数据,分析评价了蚌埠市近地面O_3污染的变化趋势及特征,并结合HYSPLIT后向气流轨迹模式及中尺度天气和预报模式(WRF-Chem)模拟预报结果,探讨了一次持续性O_3污染过程中,其他污染物、气象因素及外来传输对近地面O_3浓度的影响.同时,结合蚌埠市2015—2017年环境统计数据,分析了本地污染物排放对本地生成O_3的影响.结果表明:2015—2018年,蚌埠市近地面O_3-8 h第90百分位数由128μg·m~(-3)增长至177μg·m~(-3),呈逐年上升趋势;O_3-8 h超标率由2.28%增长至18.88%,以O_3为首要污染物的污染天数占全年污染天数的百分比由4.08%增长至50.83%,O_3成为影响蚌埠市环境空气质量的主要污染物之一.O_3污染过程期间,蚌埠市近地面以1~3 m·s~(-1)小风为主,O_3在NNW、E、SE、SSE、S方向超标较为明显.在京津冀及周边区域、长三角的中北部区域出现O_3连片污染的情况下,蚌埠市地面受偏东风、东南风和西北风影响,存在较为明显的外来污染传输过程.2015—2017年,蚌埠市工业企业数量由420家减少至257家,区域废气污染物中氮氧化物、烟(粉)尘和挥发性有机物排放量均大幅减少;机动车净增10.78万辆,机动车源排放在区域污染物排放总量中占比较大,且有逐年增加的趋势.由此可见,区域性的O_3污染及前体物输送是蚌埠市近年来O_3污染持续恶化的最主要原因,而在本地污染物(含前体物)排放量明显减少的情况下,本地机动车源排放量所占比例快速攀升,为本地O_3生成提供了大量前体物.今后,蚌埠市在O_3污染管控工作中应格外关注外源性、事件性的O_3污染及前体物输入,同时还应考虑控制本地机动车规模的快速增长. 相似文献
2.
2013年12月初长江三角洲及周边地区重霾污染的数值模拟 总被引:6,自引:0,他引:6
运用WRF-CMAQ模型模拟了2013年12月1~9日长江三角洲及周边地区的一次重霾污染过程.初步探究灰霾天气下大气细颗粒物(PM2.5)的时空分布特征和区域输送过程,并定量研究了外部源区域输送和本地源对长江三角洲地区PM2.5的贡献.结果表明:模式能够合理再现灰霾天气下长江三角洲及周边地区PM2.5的时空分布特征和演变规律.静稳天气下大气细颗粒物仍然存在着显著的区域输送.污染期间来自安徽、山东南部、苏北地区的跨界输送对长江三角洲区域PM2.5的贡献率分别为3.5%~24.9%、0.14%~30.0%、0.03%~17.5%.整个污染期间本地贡献占49%左右,本地贡献和外地贡献基本相当. 相似文献
3.
4.
5.
针对2019年4月22—26日昆明出现的臭氧污染过程,利用昆明空气质量数据、气象观测数据、NCEP及ERA5再分析资料,综合气象条件、天气形势、外源输送条件,分析本次污染过程的特征及其成因.结果表明:(1)本次臭氧污染过程O3浓度呈“单峰型”变化,7:00—8:00出现每日的谷值,13:00—15:00出现每日的峰值.(2)高温低湿条件利于O3的形成,温度为24~29℃,相对湿度为15%~35%,风向为东南风和西南风时O3浓度易超标.(3)此次污染过程中存在O3的水平和垂直外源输送,在天气系统的作用下,近地层静稳天气导致污染物的积累和生成,并利于将云南以西区域高浓度O3向昆明上空水平输送;平流层下层-对流层上层的垂直入侵使高层含高浓度O3的空气向对流层及近地层输送.(4)HYSPLIT后向轨迹进一步验证,污染过程外源输送的气团来源于云南以西的中低纬度地区,污染物浓度与气团移动路径及天气系统相吻合. 相似文献
6.
河南省冬季3次重污染过程的数值模拟及输送特征分析 总被引:1,自引:0,他引:1
利用WRF-Chem模式模拟2015年11月27日—12月1日、12月5—14日、12月19—25日河南3次重污染过程,结合空气污染资料和ERA-Interim再分析资料,对比分析了这3次重污染过程的开始、持续和结束及污染物的输送特征.结果表明,静稳天气有利于污染的发展持续,3次重污染过程的结束均是由西路冷空气入侵造成的.第1次重污染过程平均风场上的风速均为小风或静风,从湖北到河南南部风向为偏南风;而第2和第3次重污染过程平均风场分别以偏东和偏北风为主.第2和第3次重污染过程中均存在明显的由北向南的污染物输送过程.3次重污染过程中,河南省本地排放对本省PM_(2.5)浓度的平均贡献率最大,而河南省周边区域对河南PM_(2.5)浓度的平均贡献率在这3次过程中不一样,第1次重污染过程,河南南部主要受偏南风影响,湖北对河南PM_(2.5)浓度的平均贡献率最大,为20.7%;第2和第3次重污染过程主要受偏东风影响,安徽和江苏对河南PM_(2.5)浓度的平均贡献率最大,分别为17.7%和18.5%.3次重污染过程中,安阳的主要污染输送源均不相同,分别来自河北、江苏和安徽、本省. 相似文献
7.
《环境保护科学》2017,(6):66-70
文章以位于温州城区的瓯海区为例,在建立大气污染源清单的基础上,利用WRF-CMAQ、CALPUFF模型分析了外来污染物区域输送对瓯海区的影响,模拟了瓯海区主要大气污染物浓度分布,解析了区域大气污染物排放来源。WRF-CMAQ模型模拟结果表明,区域大气污染物SO_2、NO_2、PM_(10)和PM_(2.5)的输送对瓯海区的贡献影响均呈现冬季(1月)>春季(4月)>秋季(10月)>夏季(7月)的变化规律,这可能与大气污染物来源有关。CALPUFF模型模拟结果显示,瓯海区SO_2和PM_(10)的年平均浓度达标,但NO_2和PM_(2.5)出现超标现象。除SO_2均能达标外,部分敏感目标处NO_2、PM_(10)和PM_(2.5)年平均浓度有不同程度的超标现象。来源分析结果表明,瓯海区大气污染物SO_2和NO_2主要来自本地源排放,而PM_(10)和PM_(2.5)本地源与外来源的排放贡献相当。 相似文献
8.
文章利用2016-2021年杭州市环境空气质量国控监测站点及杭州光化学网站点监测数据,分析杭州夏季臭氧浓度变化特征,并结合气象资料分析一次臭氧典型污染过程。研究表明,杭州市夏季臭氧污染严重,6月超标天数要高于7月和8月,夏季臭氧浓度日变化呈现“单峰型”,8月平均臭氧日变化的峰值要略高于6月和7月。2021年6月5-9日杭州市出现的一次中度污染的臭氧污染过程,主要是在不利气象条件以及较高浓度前体物影响下的本地生成,而6月7日在本地生成之外,还受到东北方向城市区域的污染传输影响。 相似文献
9.
本文针对上海2017年夏季的一次臭氧污染过程,利用WRF-Chem模式模拟了海风环流在臭氧输送、聚集和消散过程中所起的作用.结果表明,白天的海风在沿海区域对500 m高度以下的近地面大气起到清洁作用,但海风环流上支离岸气流也会将海风辐合带的高浓度臭氧输送回到近海的边界层中上部,同时,海风环流和热岛环流的加强效应有助于臭氧前体物(VOC和NO2)在辐合带和近海边界层中上部的聚集,从而加快生成臭氧的光化学反应,进一步地加剧臭氧高值区的臭氧污染.在此基础上设计的敏感性实验分析了城市化和海温的贡献.结果发现,城市化会加重上海地区边界层上部的臭氧污染,白天城市热岛环流对海风环流存在正向叠加作用,增强近地面的向岸风;而海温升高会削弱海风,对臭氧的分布产生很大的影响,进一步证明海风环流在臭氧分布的变化中起到了重要的作用. 相似文献
10.
长江三角洲夏季一次典型臭氧污染过程的模拟 总被引:1,自引:0,他引:1
利用WRF/Chem空气质量模式对长江三角洲夏季一次典型臭氧(O3)污染过程的时空分布特征和物理化学机制进行了数值模拟研究.结果表明,模式能够合理地再现这次长江三角洲夏季典型O3污染过程的时空分布特征和演变规律.2013年8月10~18日,长江三角洲主要受副热带高压影响,晴天、高温和小风的气象条件有利于光化学污染的形成.模拟结果表明,长江三角洲地区气象场、地理位置、区域输送和化学生成都对O3的时空分布有影响.敏感性实验表明,上海O3浓度在海洋性气流影响下较低,但上海排放源对长江三角洲O3浓度时空分布的影响较为显著;南京近地面高浓度O3主要贡献为化学生成(烯烃和芳香烃)和高层O3的垂直输送,杭州和苏州近地面高浓度O3主要来源于物理过程.在O3生成速率最大时(11~13h)对O3前体物减排,对长江三角洲15:00的O3峰值浓度影响较为明显. 相似文献
11.
为探究广东省春季环境空气臭氧(O3)污染成因,选取2022年4月6—10日的一次典型污染过程,结合后向气流轨迹、潜在源贡献因子算法和权重轨迹分析法,较为全面地分析了本次污染过程的特征及传输对O3的影响.结果表明:本次污染范围涉及全省10个城市,污染前期江门市和中山市O3小时峰值浓度分别高达264μg·m-3和272μg·m-3,后期东莞市每日O3小时峰值均高于260μg·m-3.以清远市为代表性城市的分析表明,污染天日最大8 h平均O3浓度、氮氧化物(NOx)和挥发性有机物(VOCs)浓度平均值较非污染天分别升高10.8%、44.0%和168.0%.O3污染天呈高温、低湿的特点,O3浓度与温度的相关性在污染天显著增强.基于MIR值计算的O3生成潜势结果表明,与非污染天相比,污染天间、对-二甲苯、乙苯、邻二甲苯和甲苯对O 相似文献
12.
利用大连市2014~2015年地面观测资料、高空地面形势场和2015年12月NCEP/NCAR再分析资料,结合WRF-CMAQ数值模式,对大连市污染天气特征和污染过程的成因进行分析研究.结果表明:2014~2015年大连市共有大气污染日数145d,占20%,大气污染天气过程35个;发生大气污染时的高空形势场主要为槽后脊前的西北气流场,占63%,槽前西南气流场次之,占21%,槽区、脊区各占6%;地面形势场主要表现为风速较小的均压场(68%)和等压线密集风速较大的非均压场(32%)两种气压场.2015年12月出现的5次污染过程中,大气层结均为稳定层结,且近地面水平风速均值较小,对污染物垂直方向和水平方向上的扩散起到抑制作用,导致空气质量恶化;模拟结果发现大连市冬季污染过程中大气气溶胶的的主要成分是硝酸盐、铵盐和硫酸盐等细颗粒物,其中硝酸盐占比最大,且污染过程的增幅最为明显,说明机动车和燃煤排放已对大连市城市污染的形成产生重要影响. 相似文献
13.
利用观测数据、Hysplit后向轨迹模式以及WRF-CMAQ模式对中山市旱季霾特征进行模拟分析.中山市霾污染的天气形势以大陆高压型为主.当相对湿度在71%~90%时,气溶胶浓度和能见度的负相关性最显著,且当能见度减小到5 km以下时,PM_(2.5)浓度的大幅减小才能使能见度略有好转.最有可能引起中山发生霾天气的两条污染带,一条是沿中山至湖南南部,另一条是沿中山到粤东地区.WRF-CMAQ模式能较好地模拟出2014年1月份中山PM_(2.5)浓度、能见度的变化趋势以及广东省区域内灰霾的污染过程.在气溶胶质量权重及消光贡献中,硫酸盐的比重最高,在高相对湿度下,二次气溶胶的消光权重超过80%.通过中山PM_(2.5)过程分析发现,在霾过程,无冷空气时PM_(2.5)主要来自气溶胶反应、排放源和水平平流,贡献率分别为35%、15%和10%,有冷空气时水平平流的贡献最大,达37%;在清洁过程,无冷空气时气溶胶主要靠水平平流和干沉降清除,贡献率分别为-39%和-14%,有冷空气时清除以水平平流和垂直对流、扩散为主,贡献率分别为-29%和-25%,说明不同天气条件下霾的污染和清洁机制有着明显差别. 相似文献
14.
就河口水域水环境状况模型研究进展进行了述评和分析,包括二维和三维河口水动力数学模型以及描述水环境中介质运移的数学模型。本文以河口水域尾水海洋处置排放口近区和远区的模型研究为对象,对该水域模型研究进展进行了分析;另外,考虑到河口水域复杂的水动力状况、不同环境介质的相互作用等,本文对模型发展的趋势提出了一些建议,对河口水域资源管理和模拟预测具有一定意义。 相似文献
15.
16.
广东省臭氧污染特征及其来源解析研究 总被引:12,自引:0,他引:12
使用广东省近年大范围长期连续臭氧观测数据分析了珠三角与广东省的臭氧污染特征,并使用NAQPMS模型研究了广东省与典型城市不同季节的臭氧来源情况.结果表明:2014—2016年广东省的臭氧污染局部在改善.珠三角的臭氧浓度水平总体高于粤东西北地区,广东省臭氧总体上呈现出珠三角中南部和粤东东部部分地区较高、粤西污染相对较轻的分布态势.广东省的臭氧夏秋季浓度较高,冬春季浓度较低.广东省臭氧主要来源于本地排放,夏季占比为57%,其余季节约占40%,臭氧的跨省输送特征明显.珠三角西南部春夏季臭氧本地贡献约为50%,但秋冬季仅占19%~28%.若要减轻广东的臭氧污染,建议实施臭氧消峰行动,即在夏秋季节严控珠三角地区的臭氧前体物排放,特别是珠三角中部广州、佛山与东莞等城市的排放要重点控制.同时,强化粤东西北地区与周边省份的协同减排. 相似文献
17.
分析了广东省2015—2021年的臭氧浓度特征,选取2018—2020年台风相对活跃的夏秋季(7—10月)作为研究时段,研究了广东省臭氧污染与台风之间的关系.结果表明,2015—2021年,广东省臭氧浓度经历了先升后降的变化过程,2019年,广东省臭氧第90百分位数浓度达到了有监测数据以来的最高值,但仍未超过国家二级标准限值.广东省在春季与秋季臭氧超标天数较多,且近年来冬春季臭氧超标情况在加剧,秋季臭氧超标情况有所好转.7—10月,广东省约81%的臭氧污染与周边台风活动有关,在受台风影响的污染天中,有约80%发生在台风距离广东2500 km范围内.深圳与汕尾臭氧污染与台风活动关系最密切,夏秋季,超过9成的污染天与台风活动相关;汕头、珠海、中山、茂名、阳江、江门等沿海城市夏秋季臭氧污染天中超过8成与台风活动相关.内陆城市臭氧污染与台风的关联性相对较小,梅州臭氧污染与台风活动关联最小.与在东南亚、我国海南或广东登陆的台风相比,北上的台风更容易导致广东地区出现臭氧污染.在台风外围下沉气流的影响下,珠三角中部等主要大气污染物排放区域及周边容易出现大范围晴热高温天气;水平风速低,水平扩散条件不利... 相似文献