共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Pacific northwestern (PNW) region of North America, climatic conditions have significantly warmed since a predominantly cool phase of the Pacific North American circulation patterns between 1950 and 1975. What are the implications of this shift in climate for the vulnerability of native tree species? To address this question, we combined mechanistic and statistical models to assess where a variety of native tree species might be more vulnerable within their recorded ranges and where they might potentially migrate. For long-lived species that are well adapted to compete, seasonal differences in photosynthesis and water use offer insights helpful in predicting their distributions. To evaluate the general response of conifers to climatic variation across the region, we previously applied a process-based model (3-PG), to simulate the growth and maximum leaf area index that Douglas-fir could attain within recognized forested areas. We then constructed automated decision tree models to define and map the ecological distributions of 15 tree species based on differences in how photosynthesis was constrained by drought, daytime temperatures, high evaporative demand, and the frequency of frost. For the baseline climate period (1950-1975), the decision tree models predicted presence and absence of each species at ∼23,000 observations with an average accuracy of 81%, with an average kappa statistic of 0.74. In this paper the same models were run annually for the period between 1976 and 2006 for each species, and the areas defined as remaining suitable or becoming vulnerable to disturbance were identified based on whether more or less than half of the years fell within the originally defined limits. Based on these criteria, 70% of the species recorded ranges remained suitable, with 30% deemed vulnerable. Results varied notably by species with western red cedar and western hemlock remaining highly adapted, with potential for range expansion in area of up to 50% relative to the baseline period. In contrast, ponderosa pine, lodgepole pine, grand, and noble fir were classified as vulnerable with potential net contractions in their ranges. The analysis was extended through the rest of the 21st century using climatic projections from the Canadian global circulation model with a high fossil fuel emission scenario (A2) and compared to other previously published species range predictions. 相似文献
2.
Environmental Geochemistry and Health - 相似文献
3.
Perennial monoculture forming grasses are very important natural remediators of pollutants. Their genetic improvement is an important task because introduction of key transgenes can dramatically improve their remediation potential. Transfer of key genes for mercury phytoremediation into the salt marsh cordgrass (Spartina alterniflora) is reported here. S. alterniflora plays an important role in the salt marsh by cycling of␣elements, both nutrients and pollutants, protects the coastline from erosion, is a keystone species in the␣salt marsh supporting a large food web, which in turn supports a significant segment of economy, including tourism, has an impact on cloud formation and consequently on global weather, and is thus an ecologically important species relevant for our life-support systems. Embryogenic callus of S. alterniflora was co-inoculated with a pair of Agrobacterium strains LBA4404 carrying the organomercurial lyase (merB) and mercuric reductase (merA) genes, respectively, in order to co-introduce both the merA and the merB genes. Seven stable geneticin resistant lines were recovered. The presence of merA and merB genes was verified by PCR and Southern blotting. All but one transgenic lines contained both the merA and the merB sequences proving that co-introduction into Spartina of two genes from separate Agrobacterium strains is feasible and frequent, although the overall frequency of transformation is low. Northern blotting showed differences in relative expression of the two transgenes among individual transformants. The steady-state RNA levels appeared to correlate with the phenotype. Line #7 showed the highest resistance to HgCl2 (up to 500 μM), whereas line #3 was the most resistant to phenylmercuric acetate (PMA). Wild-type (WT) callus is sensitive to PMA at 50 μM and to HgCl2 at 225 μM. 相似文献
4.
5.
6.
7.
Dirac Twidwell Carissa L. Wonkka Christine H. Bielski Craig R. Allen David G. Angeler Jacob Drozda Ahjond S. Garmestani Julia Johnson Larkin A. Powell Caleb P. Roberts 《Conservation biology》2018,32(4):905-915
A modern challenge for conservation biology is to assess the consequences of policies that adhere to assumptions of stationarity (e.g., historic norms) in an era of global environmental change. Such policies may result in unexpected and surprising levels of mitigation given future climate‐change trajectories, especially as agriculture looks to protected areas to buffer against production losses during periods of environmental extremes. We assessed the potential impact of climate‐change scenarios on the rates at which grasslands enrolled in the Conservation Reserve Program (CRP) are authorized for emergency harvesting (i.e., biomass removal) for agricultural use, which can occur when precipitation for the previous 4 months is below 40% of the normal or historical mean precipitation for that 4‐month period. We developed and analyzed scenarios under the condition that policy will continue to operate under assumptions of stationarity, thereby authorizing emergency biomass harvesting solely as a function of precipitation departure from historic norms. Model projections showed the historical likelihood of authorizing emergency biomass harvesting in any given year in the northern Great Plains was 33.28% based on long‐term weather records. Emergency biomass harvesting became the norm (>50% of years) in the scenario that reflected continued increases in emissions and a decrease in growing‐season precipitation, and areas in the Great Plains with higher historical mean annual rainfall were disproportionately affected and were subject to a greater increase in emergency biomass removal. Emergency biomass harvesting decreased only in the scenario with rapid reductions in emissions. Our scenario‐impact analysis indicated that biomass from lands enrolled in the CRP would be used primarily as a buffer for agriculture in an era of climatic change unless policy guidelines are adapted or climate‐change projections significantly depart from the current consensus. 相似文献
8.
Data points intensively sampling 46 North American biomes were used to predict the geographic distribution of biomes from climate variables using the Random Forests classification tree. Techniques were incorporated to accommodate a large number of classes and to predict the future occurrence of climates beyond the contemporary climatic range of the biomes. Errors of prediction from the statistical model averaged 3.7%, but for individual biomes, ranged from 0% to 21.5%. In validating the ability of the model to identify climates without analogs, 78% of 1528 locations outside North America and 81% of land area of the Caribbean Islands were predicted to have no analogs among the 46 biomes. Biome climates were projected into the future according to low and high greenhouse gas emission scenarios of three General Circulation Models for three periods, the decades surrounding 2030, 2060, and 2090. Prominent in the projections were (1) expansion of climates suitable for the tropical dry deciduous forests of Mexico, (2) expansion of climates typifying desertscrub biomes of western USA and northern Mexico, (3) stability of climates typifying the evergreen-deciduous forests of eastern USA, and (4) northward expansion of climates suited to temperate forests, Great Plains grasslands, and montane forests to the detriment of taiga and tundra climates. Maps indicating either poor agreement among projections or climates without contemporary analogs identify geographic areas where land management programs would be most equivocal. Concentrating efforts and resources where projections are more certain can assure land managers a greater likelihood of success. 相似文献
9.
The Baltic Sea spring phytoplankton bloom in a changing climate: an experimental approach 总被引:1,自引:0,他引:1
Ulrich Sommer Nicole Aberle Kathrin Lengfellner Aleksandra Lewandowska 《Marine Biology》2012,159(11):2479-2490
The response of the Baltic Sea spring bloom was studied in mesocosm experiments, where temperatures were elevated up to 6°C above the present-day sea surface temperature of the spring bloom season. Four of the seven experiments were carried out at different light levels (32–202?Wh?m?2 at the start of the experiments) in the different experimental years. In one further experiment, the factors light and temperature were crossed, and in one experiment, the factors density of overwintering zooplankton and temperature were crossed. Overall, there was a slight temporal acceleration of the phytoplankton spring bloom, a decline of peak biomass and a decline of mean cell size with warming. The temperature influence on phytoplankton bloom timing, biomass and size structure was qualitatively highly robust across experiments. The dependence of timing, biomass, and size structure on initial conditions was tested by multiple regression analysis of the y-temperature regressions with the candidate independent variables initial light, initial phytoplankton biomass, initial microzooplankton biomass, and initial mesozooplankton (=copepod) biomass. The bloom timing predicted for mean temperatures (5.28°C) depended on light. The peak biomass showed a strong positive dependence on light and a weaker negative dependence on initial copepod density. Mean phytoplankton cell size predicted for the mean temperature responded positively to light and negatively to copepod density. The anticipated mismatch between phytoplankton supply and food demand by newly hatched copepod nauplii occurred only under the combination of low light and warm temperatures. The analysis presented here confirms earlier conclusions about temperature responses that are based on subsets of our experimental series. However, only the comprehensive analysis across all experiments highlights the importance of the factor light. 相似文献
10.
Model of coral population response to accelerated bleaching and mass mortality in a changing climate
We model coral community response to bleaching and mass mortality events which are predicted to increase in frequency with climate change. The model was parameterized for the Arabian/Persian Gulf, but is generally applicable. We assume three species groups (Acropora, faviids, and Porites) in two life-stages each where the juveniles are in competition but the adults can enter a size-refuge in which they cannot be competitively displaced. An aggressive group (Acropora species) dominates at equilibrium, which is not reached due to mass mortality events that primarily disadvantage this group (compensatory mortality, >90% versus 25% in faviids and Porites) roughly every 15 years. Population parameters (N individuals, carrying capacity) were calculated from satellite imagery and in situ transects, vital rates (fecundity, mortality, and survival) were derived from the model, field observations, and literature. It is shown that populations and unaltered community structure can persist despite repeated 90% mortality, given sufficiently high fecundity of the remaining population or import from connected populations. The frequency of disturbance determines the dominant group—in low frequency Acropora, in high frequency Porites. This is congruent with field observations. The model of an isolated population was more sensitive to parameter changes than that of connected populations. Highest sensitivity was to mortality rate and recruitment rate. Community composition was sensitive to spacing of disturbances and level of catastrophic mortality. Decreased mortality led to Acropora dominance, increased mortality led to Acropora extinction. In nature, closely spaced disturbances have severely disadvantaged Acropora populations over the last decade. Unless a longer (>10 years) disturbance-free interval can be maintained, a permanent shift away from Acropora dominance will be observed. A mortality rate of 99% in Acropora, as observed in 1996, is not sustainable if repetitive and neither is a disturbance frequency <15 years—each leading to population collapse. This shows that the severity and/or the spacing of the 1996–1998–2002 disturbances were unusual in frequency and duration. 相似文献
11.
The use of higher plants to remediate contaminated land is known as phytoremediation, a term coined 15 years ago. Among green technologies addressed to metal pollution, phytoextraction has received increasing
attention starting from the discovery of hyperaccumulator plants, which are able to concentrate high levels of specific metals
in the above-ground harvestable biomass. The small shoot and root growth of these plants and the absence of their commercially
available seeds have stimulated study on biomass species, including herbaceous field crops. We review here the results of
a bibliographical survey from 1995 to 2009 in CAB abstracts on phytoremediation and heavy metals for crop species, citations of which have greatly increased, especially after 2001. Apart from the most frequently cited
Brassica juncea (L.) Czern., which is often referred to as an hyperaccumulator of various metals, studies mainly focus on Helianthus annuus L., Zea mays L. and Brassica napus L., the last also having the greatest annual increase in number of citations. Field crops may compensate their low metal
concentration by a greater biomass yield, but available data from in situ experiments are currently very few. The use of amendments
or chelators is often tested in the field to improve metal recovery, allowing above-normal concentrations to be reached. Values
for Zn exceeding 1,000 mg kg−1 are found in Brassica spp., Phaseolus vulgaris L. and Zea mays, and Cu higher than 500 mg kg−1 in Zea mays, Phaseolus vulgaris and Sorghum bicolor (L.) Moench. Lead greater than 1,000 mg kg−1 is measured in Festuca spp. and various Fabaceae. Arsenic has values higher than 200 mg kg−1 in sorghum and soybean, whereas Cd concentrations are generally lower than 50 mg kg−1. Assisted phytoextraction is currently facilitated by the availability of low-toxic and highly degradable chelators, such
as EDDS and nitrilotriacetate. Currently, several experimental attempts are being made to improve plant growth and metal uptake,
and results are being achieved from the application of organic acids, auxins, humic acids and mycorrhization. The phytoremediation
efficiency of field crops is rarely high, but their greater growth potential compared with hyperaccumulators should be considered
positively, in that they can establish a dense green canopy in polluted soil, improving the landscape and reducing the mobility
of pollutants through water, wind erosion and water percolation. 相似文献
12.
A simulation procedure for the calculation of temperature, cloudiness, radiation, precipitation, air humidity, windiness and atmospheric carbon is presented. The procedure generates the hourly or daily values of the weather factors based on long-term weather statistics. The basic factor behind the weather pattern indicated by different weather factors is air temperature, which modifies the cloudiness produced by a stochastic process in other respects. Consequently, the radiation and precipitation coming onto a site and the air humidity are also modified by temperature. This facilitates the future weather patterns to be calculated on the basis of the temperature increase allowing to introduce the effect of the suggested climatic change also into the other weather factors, assuming that the basic variability of the weather factors remains unchanged. The future windiness is calculated as random process without correlation to other weather factors. 相似文献
13.
Wildlife managers face the daunting task of managing wildlife in light of uncertainty about the nature and extent of future climate change and variability and its potential adverse impacts on wildlife. A conceptual framework is developed for managing wildlife under such uncertainty. The framework uses fuzzy logic to test hypotheses about the extent of the wildlife impacts of past climate change and variability, and fuzzy multiple attribute evaluation to determine best compensatory management actions for adaptively managing the potential adverse impacts of future climate change and variability on wildlife. A compensatory management action is one that can offset some of the potential adverse impacts of climate change and variability on wildlife. Implementation of the proposed framework requires wildlife managers to: (1) select climate impact states, hypotheses about climate impact states, possible management actions for alleviating adverse wildlife impacts of climate change and variability, and future climate change scenarios; (2) choose biological attributes or indicators of species integrity; (3) adjust those attributes for changes in non-climatic variables; (4) define linguistic variables and associated triangular fuzzy numbers for rating both the acceptability of biological conditions under alternative management actions and the relative importance of biological attributes; (5) select minimum or maximum acceptable levels of the attributes and reliability levels for chance constraints on the biological attributes; and (6) define fuzzy sets on the extent of species integrity and biological conditions and select a fuzzy relation between species integrity and biological conditions. A constructed example is used to illustrate a hypothetical application of the framework by a wildlife management team. An overall best compensatory management action across all climate change scenarios is determined using the minimax regret criterion, which is appropriate when the management team cannot assign or is unwilling to assign probabilities to the future climate change scenarios. Application of the framework can be simplified and expedited by incorporating it in a web-based, interactive, decision support tool. 相似文献
14.
Large predatory fishes are disproportionately targeted by reef fisheries, but little is known about their trophic ecology, which inhibits understanding of community dynamics and the potential effects of climate change. In this study, stable isotope analyses were used to infer trophic ecology of a guild of large predatory fishes that are targeted by fisheries on the Great Barrier Reef, Australia. Each of four focal predators (Plectropomus leopardus, Plectropomus maculatus, Lethrinus miniatus and Lutjanus carponotatus) was found to have a distinct isotopic signature in terms of δ13C and δ15N. A two-source mixing model (benthic reef-based versus pelagic) indicated that P. leopardus and L. miniatus derive the majority (72 and 62 %, respectively) of their production from planktonic sources, while P. maculatus and L. carponotatus derive the majority (89 and 74 %, respectively) of their production from benthic reef-based sources. This indicates that planktonic production is important for sustaining key species in reef fisheries and highlights the need for a whole-ecosystem approach to fisheries management. Unexpectedly, there was little isotopic niche overlap between three of four focal predators, suggesting that inter-specific competition for prey may be low or absent. δ15Nitrogen indicated that the closely related P. leopardus and P. maculatus are apex predators (trophic level > 4), while δ13C indicated that each species has a different diet and degree of trophic specialisation. In view of these divergent trophic ecologies, each of the four focal predators (and the associated fisheries) are anticipated to be differentially affected by climate-induced disturbances. Thus, the results presented herein provide a useful starting point for precautionary management of exploited predator populations in a changing climate. 相似文献
15.
Surface modelling of global terrestrial ecosystems under three climate change scenarios 总被引:7,自引:0,他引:7
Tian-Xiang Yue Ze-Meng FanChuan-Fa Chen Xiao-Fang SunBai-Lian Li 《Ecological modelling》2011,222(14):2342-2361
A high accuracy and speed method (HASM) of surface modelling is developed to find a solution for error problem and to improve computation speed. A digital elevation model (DEM) is established on spatial resolution of 13.5 km × 13.5 km. Regression formulations among temperature, elevation and latitude are simulated in terms of data from 2766 weather observation stations scattered over the world by using the 13.5 km × 13.5 km DEM as auxiliary data. Three climate scenarios of HadCM3 are refined from spatial resolution of 405 km × 270 km to 13.5 km × 13.5 km in terms of the regression formulations. HASM is employed to simulate surfaces of mean annual bio-temperature, mean annual precipitation and potential evapotranspiration ratio during the periods from 1961 to 1990 (T1), from 2010 to 2039 (T2), from 2040 to 2069 (T3), and from 2070 to 2099 (T4) on spatial resolution of 13.5 km × 13.5 km. Three scenarios of terrestrial ecosystems on global level are finally developed on the basis of the simulated climate surfaces. The scenarios show that all polar/nival, subpolar/alpine and cold ecosystem types would continuously shrink and all tropical types, except tropical rain forest in scenario A1Fi, would expand because of the climate warming. Especially at least 80% of moist tundra and 22% of nival area might disappear in period T4 comparing with the ones in the period T1. Tropical thorn woodland might increase by more than 97%. Subpolar/alpine moist tundra would be the most sensitive ecosystem type because its area would have the rapidest decreasing rate and its mean center would shift the longest distance towards west. Subpolar/alpine moist tundra might be able to serve as an indicator of climatic change. In general, climate change would lead to a continuous reduction of ecological diversity. 相似文献
16.
Risk assessment in the face of a changing environment: gypsy moth and climate change in Utah. 总被引:1,自引:0,他引:1
The importance of efficaciously assessing the risk for introduction and establishment of pest species is an increasingly important ecological and economic issue. Evaluation of climate is fundamental to determining the potential success of an introduced or invasive insect pest. However, evaluating climatic suitability poses substantial difficulties; climate can be measured and assessed in a bewildering array of ways. Some physiological filter, in essence a lens that focuses climate through the requirements and constraints of a potential pest introduction, is required. Difficulties in assessing climate suitability are further exacerbated by the effects of climate change. Gypsy moth (Lymantria dispar L.) is an exotic, tree-defoliating insect that is frequently introduced into the western United States. In spite of an abundance of potential host species, these introductions have yet to result in established populations. The success of eradication efforts and the unsuccessful establishment of many detected and undetected introductions may be related to an inhospitable climate. Climatic suitability for gypsy moth in the western United States, however, is potentially improving, perhaps rapidly, due to a general warming trend that began in the mid 1970s and continues today. In this work, we describe the application of a physiologically based climate suitability model for evaluating risk of gypsy moth establishment on a landscape level. Development of this risk assessment system first required amassing databases that integrated the gypsy moth climatic assessment model, with host species distributions, and climate (historical, present, and future). This integrated system was then used to evaluate climate change scenarios for native host species in Utah, with the result that risk of establishment will dramatically increase during the remainder of the 21st century under reasonable climate change scenarios. We then applied the risk assessment system to several case histories of detected gypsy moth introductions in Utah. These applications demonstrated the general utility of the system for predicting risk of establishment and for designing improved risk detection strategies. 相似文献
17.
Climate change is increasing the need to characterise the vulnerability of coastal landscapes to coastal and flood hazards that result in erosion and inundation. Indices, such as the Coastal Vulnerability Index (CVI), have emerged as useful tools with which coastal managers can prioritise areas for further detailed assessment of vulnerability, risk, resilience and adaptation options. Approaches, such as the use of an index, efficiently characterise the vulnerability of linear, one-dimensional coastal features such as coastlines; however, they do not capture variability in coastal processes affecting more complex, non-linear features, such as estuaries, or interactive effects of coastal processes between linear (e.g. coastlines) and non-linear (e.g. estuaries) landforms. We present an approach that uses geomorphology to indicate biophysical vulnerability of estuaries to coastal and flood hazards. The approach is applied to the South Coast of NSW; a wave-dominated coastline of approximately 400 km length that contains more than 100 estuaries. We demonstrate the simplicity of the approach and its utility in identifying areas requiring higher resolution assessments. Although this approach does not include socio-economic factors, we demonstrate the capacity to incorporate socio-economic components of vulnerability using regional land use mapping. We infer that the most vulnerable estuaries are characterised by large catchment areas, broad estuarine valleys, mature stages of infill, or entrances oriented towards the prevailing wave direction. The area below 15 m elevation was identified as a robust indicator of the total area of vulnerability within a catchment. This approach can be applied to one-dimensional and more complex two-dimensional landscapes, such as estuaries; integrates varying sea-level rise projections; and incorporates a wider range of hazards that operate in the coastal zone. 相似文献
18.
One of the least explored sources of algorithmic uncertainty in bioclimatic envelope models (BEM) is the selection of thresholds to transform modelled probabilities of occurrence (or indices of suitability) into binary predictions of species presence and absence. We investigate the impacts of such thresholds in the specific context of climate change. BEM for European tree species were fitted combining 9 climatic models and emissions scenarios, 7 modelling techniques, and 14 threshold-setting techniques. We quantified sources of uncertainty in projections of turnover, and found that the choice of the modelling technique explained most of the variability (39%), while threshold choice explained 25% of the variability in the results, and their interaction an additional 19%. Choice of future climates explained 9% of total variability among projections. Estimated species range shifts obtained by applying different thresholds and models were grouped by IUCN-based categories of threat. Thresholds had a large impact on the inferred risks of extinction, producing 1.7- to 9.9-fold differences in the proportions of species projected to become threatened by climate change. Results demonstrate that threshold selection has large - albeit often unappreciated - consequences for estimating species range shifts under climate change. 相似文献
19.
Prosper I. K. Evadzi Jürgen Scheffran Eduardo Zorita Birgit Hünicke 《Journal of Coastal Conservation》2018,22(1):183-197
In response to climate change, coastal communities are expected to experience increasing coastal impacts of sea-level rise (SLR). Strategies formulated and implemented to curb these impacts can thus be more effective if scientific findings on the response to climate change and SLR impacts on coastal communities are taken into consideration and not based merely on the need for coastal protection due to physical coastal erosion. There is also the need to determine the level of awareness of sea-level rise and responses in coastal communities to improve adaptation planning. This study assesses the impact of future erosion on the coastal land cover of Ghana. This assessment estimates approximately 2.66 km2, 2.77 km2, and 3.24 km2 of coastal settlements, 2.10 km2, 2.20 km2 and 2.58 km2 of lagoons, 1.39 km2, 1.46 km2 and 1.71 km2 of wetlands to be at risk of inundation by the year 2050 based on coastal erosion estimates for the 2.6, 4.5 and 8.5 Representative Concentration Pathways (RCPs) used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). This study also assesses the level of awareness of respondents to SLR on the coast of Ghana and explores the availability and level of integration of scientific knowledge of SLR into coastal adaptation strategies in Ghana. Assessment of the awareness of SLR responses to the changing climate in Ghana is made through semi-structured interviews at national, municipal/district and coastal community scales. Although settlements may be inundated based on the coastal erosion estimates, coastal dwellers interviewed cherish their proximity to the sea and are determined to maintain their occupancy close to the sea as spatial location influences their source of livelihood (fishing). Respondents lack knowledge/understanding of SLR, as the majority of household interviewees attributed the rise or fall in sea level to God. Respondents from Ngiresia alleged that the ongoing coastal sea defence project in their community has led to increased malaria cases. 相似文献
20.
As changes in climate become more apparent, ecologists face the challenge of predicting species responses to the new conditions. Most forecasts are based on climate envelopes (CE), correlative approaches that project future distributions on the basis of the current climate often assuming some dispersal lag. One major caveat with this approach is that it ignores the complexity of factors other than climate that contribute to a species' distributional range. To overcome this limitation and to complement predictions based on CE modeling we carried out a transplant experiment of resident and potential-migrant species. Tree seedlings of 18 species were planted side by side from 2001 to 2004 at several locations in the Southern Appalachians and in the North Carolina Piedmont (U.S.A.). Growing seedlings under a large array of environmental conditions, including those forecasted for the next decades, allowed us to model seedling survival as a function of variables characteristic of each site, and from here we were able to make predictions on future seedling recruitment. In general, almost all species showed decreased survival in plots and years with lower soil moisture, including both residents and potential migrants, and in both locations, the Southern Appalachians and the Piedmont. The detrimental effects that anticipated arid conditions could have on seedling recruitment contradict some of the projections made by CE modeling, where many of the species tested are expected to increase in abundance or to expand their ranges. These results point out the importance of evaluating the potential sources of migrant species when modeling vegetation response to climate change, and considering that species adapted to the new climate and the local conditions may not be available in the surrounding regions. 相似文献