首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
为研究北京城区PM2.5不同组分对大气消光系数的贡献率,于2013年10月—2014年8月使用3台PQ200采样器在北京市环境保护科学研究院采集PM2.5样品并进行质量重建,采用IMPROVE方程计算大气消光系数并分析各组分的贡献率.结果表明:1北京城区ρ(PM2.5)年均值为(90.3±8.1)μg/m3,相比2005年有所下降,颗粒物呈弱碱性,NH4+略有剩余.2PM2.5质量重建后,化学构成为OM〔32.1%,为ρ(OM)占ρ(PM2.5)比例,下同〕、NO3-(13.6%)、SO42-(13.9%)、NH4+(11.1%)、Cl-(3.8%)、其他离子(4.0%)、EC(元素碳,5.0%)、FS(土壤尘,8.9%)、微量元素(1.3%)和未知物质(6.7%);与2005年相比,OM、NO3-、NH4+等二次污染物质量浓度占ρ(PM2.5)比例均显著增加,ρ(水溶性离子)占ρ(PM2.5)的比例随空气污染加重而增加.3北京城区大气消光系数年均值为(504.6±49.3)Mm-1,OM、(NH4)2SO4、NH4NO3、EC和FS的贡献率分别为37.5%、28.3%、25.2%、7.6%和1.4%;冬季由于ρ(PM2.5)高,大气消光系数最高,为(589±124.3)Mm-1,约是春季的2倍;夏季由于相对湿度大,PM2.5吸湿粒径增大,大气消光系数仅次于冬季.OM对大气消光系数贡献率为冬季最高,而(NH4)2SO4的贡献率在冬夏季均大于NH4NO3.  相似文献   

2.
于2010年11月4~30日在广州城区每天昼夜各采集一个PM2.5样品.对样品进行有机碳、元素碳和水溶性离子分析,同步收集了在线PM2.5浓度、大气消光系数(bext)以及气象因子,探讨了PM2.5特征及其与大气消光系数的关系,并利用修正后的IMPROVE消光系数方程重建大气消光系数.结果发现:亚运期间PM2.5日均值质量浓度为(77.0±24.4)μg·m-3,比亚运前低27.8%.PM2.5和相对湿度是导致霾天气的重要因素.亚运期间大气消光系数为418 Mm-1,比亚运前低28.3%,(NH4)2SO4、POM(particulate organic material)和LAC(light-absorbing carbon)是主要贡献因子,贡献率达到87.0%.广州及其周边城市采取的减排措施对于缓解亚运期间广州城区的霾天气作用明显.  相似文献   

3.
冬季北京城区大气重污染特征分析   总被引:1,自引:0,他引:1  
为研究北京市城区大气重污染特征,对2013年12月~2014年2月期间北京市6次大气重污染过程的PM2.5浓度水平、化学组成以及大气氧化性和气象要素特征进行了分析。结果表明,重污染日PM2.5平均质量浓度达到265.0μg/m3,是非重污染日的3.5倍。 PM2.5组分中NO3-,SO42-,NH4+和有机碳(OC)在重污染日的平均浓度分别是非重污染日的6.8,3.4,2.7和2.6倍。前3次过程中SO42-浓度最高,后3次过程中SO42-浓度与NO3-浓度接近。从气象要素来看,重污染期间的基本特征为地面温度升高、相对湿度增大、地面气压降低和风速减小。重污染日的能见度显著降低,平均能见度仅为非重污染日的34.4%。重污染日的大气氧化性明显增强,大气氧化剂OX平均浓度是非重污染日的1.5倍,(OC)/(EC)平均比值是非重污染日的1.6倍。  相似文献   

4.
成都春季生物质燃烧和沙尘期间气溶胶散射特征及其重建   总被引:1,自引:6,他引:1  
于2009年4月19日~5月17日在成都城区每天采集PM2.5样品.利用热光碳分析仪、离子色谱、X荧光光谱仪和高效阴离子交换色谱分别分析样品中有机碳/元素碳、水溶性离子、地壳元素和左旋葡聚糖,同步测量了大气散射系数(bsp)和气象数据.利用IMPROVE方程重建大气散射系数,并与实测大气散射系数进行对比.结果发现,PM2.5浓度均值为133.2μg.m-3,大气散射系数为530 Mm-1.左旋葡聚糖和地壳元素能很好地反映生物质燃烧和沙尘事件.观测期间成都城区计算值b’sp为504 Mm-1,(NH4)2SO4、NH4NO3、OM(organic matter)、FS(fine soil)和CM(coarse mass)贡献率分别为26%、15%、53%、4%和2%.DS(dust storm)期间,计算值b’sp为575 Mm-1,FS和CM贡献率达到17%和21%.BB(biomass burning)期间,计算值b’sp为635 Mm-1,OM贡献率达到62%.  相似文献   

5.
于2012年12月—2013年12月在广州城区(市站)和东部郊区(九龙)开展为期一年的PM2.5样品采集,并同步收集气象因子和气态污染物质量浓度等数据.结果表明,PM2.5中主要化学组分为有机质(OM)和硫酸盐(SO2-4),分别占市站和九龙PM2.5质量浓度的49.4%和15.2%及57.0%和17.3%.碳质气溶胶(OM和EC)贡献接近50%,二次无机气溶胶(SO2-4、NO-3和NH+4总和,SIA)贡献超过30%.由于以机动车尾气为代表的移动污染源在城市区域贡献较大,市站[NO-3]/[SO2-4]比值显著高于九龙.两个站点[NH+4]/[SO2-4]摩尔质量比均高于1.5,表明观测期间广州市干季大气处于富铵状态.市站和九龙站硫氧化率(SOR)和氮氧化率(NOR)的时空变化趋势与O3类似,表明大气光化学过程是影响广州市SOR和NOR的重要因素.相对湿度低于65%时,SOR和NOR均较高;温度对SOR和NOR的影响有显著的城郊差异.降雨对PM2.5及各化学组分浓度有显著去除作用.  相似文献   

6.
上海市大气散射消光特征及其与颗粒物化学组成关系研究   总被引:2,自引:2,他引:2  
为研究上海市大气颗粒物散射系数分布特征以及颗粒物化学组分贡献率,2009年用浊度仪对散射系数进行观测,同时采集PM2.5,分析其主要化学成分浓度.观测发现,秋、冬季散射系数较高,夏季最小.散射系数日变化有早、晚两个峰,午间出现低谷.散射系数与温度、风速有显著负相关性.多元回归得到OC、NO-3、NH+4是影响消光系数的主要化学成分.依据IMPROVE估算公式,将OC分为吸湿性和非吸湿性部分,并加入海盐影响,使估算bext值更接近监测值.OC、EC和硫酸铵盐为估算消光系数主要贡献成分.  相似文献   

7.
针对北京地区冬季和春季PM2.5污染特征进行研究.于2009年12月~2010年5月在城市点采集24h 大气颗粒物样品,进行颗粒物主要化学组分分析.冬季和春季颗粒物的平均质量浓度分别为(84.97±68.98)μg/m3和(65.25±45.76)μg/m3.冬季和春季颗粒物中二次组分(SNA+SOA)有重要贡献,二次组分分别占颗粒物质量浓度的49%和47%.冬春季重污染时期较强的源排放和低温、低风速、高相对湿度等不利的气象特征使得颗粒物中二次无机离子SNA(NH4+、NO3-、SO42-)的比重较干净天明显上升,其中硝酸盐贡献的增强最为显著.同时冬春季有机物中二次有机组分贡献显著.而受一次源的影响,冬春季重污染时期一次有机物的增强.  相似文献   

8.
北京南部城区PM2.5中碳质组分特征   总被引:2,自引:3,他引:2  
为了解《大气污染防治行动计划》实施后北京市大气PM2.5中碳质组分特征,于2017年12月至2018年12月在北京污染较重的南部城区进行了PM2.5连续采样,对其中的有机碳(OC)和元素碳(EC)进行了全面研究.结果表明,北京大气PM2.5、OC和EC浓度变化范围分别为4.2~366.3、 0.9~74.5和0.0~5.5μg·m-3,平均浓度分别为(77.1±52.1)、(11.2±7.8)和(1.2±0.8)μg·m-3,碳质组分(OC和EC)整体占PM2.5的16.1%.OC质量浓度季节特征表现为:冬季[(13.8±8.7)μg·m-3]>春季[(12.7±9.6)μg·m-3]>秋季[(11.8±6.2)μg·m-3]>夏季[(6.5±2.1)μg·m-3],EC四季质量浓度水平均较低,范围为0.8~1.5μg·m-3.二...  相似文献   

9.
李敏娜 《环保科技》2021,27(6):33-35,60
本次研究以南通市大气颗粒物组成和污染特征为研究对象,利用南通市大气超级站监测数据,分析了2020年南通市PM2.5和PM10浓度水平,时间变化特征和组分特征.结果表明,2020年南通市PM2.5和PM10年均质量浓度分别为34μg/m3和56μg/m3,具有明显的冬高夏低的特征,PM2.5/PM10呈现为冬季>夏季>春季≈秋季.PM2.5中含碳组分和水溶性阴阳离子高低顺序为:NO3->OC>SO2-4>NH4+>EC>Cl->K+>Na+>Ca2+>Mg2+.冬季OC、NH4+、SO2-4和NO3-浓度值显著高于其他三个季节,PM2.5中NO3-、OC、SO2-4和NH4+的占比分别为27.7%、15.4%、15.0%和14.2%.NO3-/SO2-4比值为1.9,表明受移动源影响较大;OC和EC浓度均为冬季最高,夏季最低,四季OC/EC介于3.2~4.6,表明南通全年均受二次有机碳(SOC)的影响,且主要受柴油、汽油车的尾气排放和燃煤排放影响.  相似文献   

10.
为研究舟山市大气细颗粒物(PM_(2.5))的主要污染来源,在2016年4月—2017年1月期间利用3个国控点对舟山市PM_(2.5)开展手工监测,并对其主要污染源进行样品采集,基于420个环境样品和13类源样品的化学组分分析,应用CMB-二重源解析技术,对舟山市颗粒物受体成分谱、本地化源成分谱的组分特征和颗粒物的污染来源进行分析。结果表明:普陀点的PM_(2.5)浓度均值低于位于主城区的檀枫点和临城点,3个站点的颗粒物浓度分别为(36. 46±19. 40),(40. 92±20. 68),(40. 03±21. 55)μg/m~3。PM_(2.5)受体中以NO_3~-、SO_4~(2-)、NH_4~+等二次组分含量最高,二次无机盐和移动源是监测期间舟山市大气PM_(2.5)的主要来源,解析结果具有显著的海岛型城市特征。以船舶源为代表的移动源既是颗粒物的重要一次源,又是二次无机盐生成的主要前体物贡献来源之一,故加强移动源的排放管理对于舟山市的颗粒物污染防治具有重要意义。  相似文献   

11.
为了解天津市2020年冬季重污染过程气溶胶消光特征,基于2020年1~2月高时间分辨率的在线监测数据,对1月16~18日(重污染过程Ⅰ)、1月26~28日(重污染过程Ⅱ)和2月9~10日(重污染过程Ⅲ)进行气溶胶消光特性及其来源分析.结果表明,3次重污染过程PM2.5平均浓度分别为(229±52)、(219±48)和(161±25)μg·m-3,NO3-、SO42-、NH4+、OC、EC、Cl-和K+为PM2.5中主要组分.3次重污染过程气溶胶散射系数(Bsp550)和吸收系数(Bap550)分别为(1055.65±250.17)、(1054.26±263.22)、(704.44±109.89) Mm-1和(52.96±13.15)、(39.72±8.21)、(34.50±8.53) Mm-1,散射效应高于吸收效应.重污染天气下硝酸盐(38.9%~48.8%)、硫酸盐(31.1%~40.7%)和OM (9.9%~21.8%)为PM2.5中最主要消光成分.3次重污染过程PM2.5组分对气溶胶消光的贡献发生明显变化,重污染过程Ⅰ,硝酸盐对消光系数的贡献最高;重污染过程Ⅱ,受春节期间烟花爆竹燃放影响,OM对消光系数的贡献升高;重污染过程Ⅲ,交通出行减少但燃煤源排放相对稳定,硝酸盐对消光系数的贡献降低,硫酸盐的贡献升高.来源解析结果显示,重污染天气气溶胶消光的主要来源为二次无机气溶胶(37.1%~42.0%)、燃煤和工业(22.9%~24.2%)、机动车(23.9%~27.2%)、扬尘源(5.0%~6.4%)和烟花爆竹及生物质燃烧排放(3.9%~6.2%).与重污染过程Ⅰ相比,重污染过程Ⅱ烟花爆竹及生物质燃烧排放对消光系数的贡献升高;重污染过程Ⅲ机动车对消光系数的贡献明显降低;燃煤和工业对消光系数的贡献在3次重污染过程中较接近.后轨迹分析表明,重污染天气期间天津市主要以来自河北的小尺度、短距离以及内蒙古中部的中尺度、中短距离气团传输轨迹为主.  相似文献   

12.
杭州市PM2.5中水溶性离子的污染特征及其消光贡献   总被引:1,自引:3,他引:1  
对杭州市2013年大气PM_(2.5)进行采样分析,探讨了其中水溶性离子的污染特征和消光贡献.杭州市PM_(2.5)中总水溶性离子的质量浓度为37.5μg·m~(-3),占PM_(2.5)质量浓度的44.4%,二次离子SNA(SO_4~(2-)、NO_3~-和NH_4~+)是水溶性离子的主要成分,共占到水溶性离子的83.4%.PM_(2.5)和主要水溶性离子的质量浓度都在冬季最大,夏季最低,夏秋季水溶性离子占PM_(2.5)的比值明显高于冬春季,而SNA在总水溶性离子中的比例4个季节非常接近.燃料燃烧和汽车尾气排放导致的二次离子生成,对杭州市PM_(2.5)贡献最大.SOR和NOR的年平均值分别为0.27和0.15,SO_2在大气中的转化率大于NO_x,SOR和NOR与相对湿度都呈现出明显正相关,非均相氧化过程对SO_4~(2-)和NO_3~-的生成具有重要贡献.气溶胶中[NO_3~-]/[SO_4~(2-)]的年平均值为0.63,主要受到燃煤排放的影响.霾天随着霾污染等级的逐渐加重,PM_(2.5)、水溶性离子和SNA的浓度都逐渐增大,SOR和NOR值也不断升高,霾天稳定的天气条件,能有效促进污染物的积累和二次转化.PM_(2.5)和SNA的质量浓度与大气消光系数都呈现出明显正相关,使用IMPROVE公式对不同化学组分消光系数的计算结果能够基本反映出气溶胶对大气散射的变化趋势,其结果显示SNA对大气总消光系数的贡献达60.8%.SNA的消光系数冬季最高,夏季最低,随着霾污染等级的加重,SNA的消光系数和对总消光的贡献比例也逐步增加.  相似文献   

13.
为研究北京市气溶胶垂直方向上的分布特征,利用微脉冲激光雷达(MPL)对北京市2015年12月—2016年11月的气溶胶光学特征进行分析,讨论了气溶胶消光系数的季节性特点以及不同污染等级下的垂直分布,并对其影响因素进行了探讨.结果表明:①北京市气溶胶消光系数垂直特征在季节上存在异质性.秋、冬两季近地面1.0 km以下气溶胶消光系数显著增大,最大气溶胶消光系数大于1.0 km-1;春、夏两季污染日较少,气溶胶消光系数在垂直方向上变化较为平缓.②不同污染等级下气溶胶消光系数的垂直特征差异明显.空气质量为优-良水平时,气溶胶消光系数较低,基本不高于0.7 km-1;轻-中度污染时,气溶胶消光系数在不同季节差异较大,冬、春两季气溶胶消光系数不超过0.8 km-1,夏、秋两季在1.0 km-1左右,部分监测站甚至在1.4km-1左右;重度及以上污染时,气溶胶消光系数基本在1.0 km-1以上,最高可达1.7 km-1.③105 m处气溶胶消光系数...  相似文献   

14.
北京地区大气消光特征及参数化研究   总被引:1,自引:6,他引:1  
陈一娜  赵普生  何迪  董璠  赵秀娟  张小玲 《环境科学》2015,36(10):3582-3589
为了研究大气消光系数的特征及规律,从2013~2014年在北京地区对大气能见度、气溶胶质量浓度、气溶胶散射系数、黑碳质量浓度、反应性气体以及气象要素开展了系统加强观测,并对已发表的气溶胶光散射吸湿增长因子[f(RH)]拟合方案进行了对比,系统分析了大气消光特征和影响大气消光能力的关键因子,最终建立了大气消光系数参数化模型,探讨不同季节、不同污染条件下参数化方案的特征.结果表明,气溶胶散射作用占环境总消光作用的94%以上,在夏秋季,相对湿度可以使气溶胶的散射能力提升70%~80%.包含气溶胶质量浓度和相对湿度两个因子的参数化模型,可以较好地体现出气溶胶和相对湿度对大气消光系数的影响机制,以及消光能力的季节差异.  相似文献   

15.
北京春季强沙尘过程前后的激光雷达观测   总被引:2,自引:0,他引:2       下载免费PDF全文
利用激光雷达、PM2.5和地面气象要素等综合观测资料,分析了北京地区2012年3月30—31日的强沙尘过程前后的天气形势和PM2.5的污染特征,反演了雷达探测期间得到的消光系数,探讨了沙尘过程中气溶胶的时空分布特征及输送特征. 结果表明:沙尘过境时,地面风速最大达到6m/s,沙尘沉降时ρ(PM2.5)增至289μg/m3,相对湿度和能见度明显降低,大气低层逆温和近地面风速等气象条件对沙尘影响地面的时间和程度起到了重要作用;沙尘层雷达反演的气溶胶消光系数最大为0.96km-1,偏振比最大为0.4,近地面消光系数变化与地面ρ(PM2.5)变化规律吻合较好,其探测可以精确反映不同天气形势下气溶胶的垂直结构和时空变化信息;高空输送至北京的沙尘以粗颗粒物为主,细粒子主要来源于本地及周边地区细粒子源;西北方向的内蒙及外蒙地区沙尘输送是导致此次北京强沙尘过程的主要原因.   相似文献   

16.
孟伟  马志强  张小玲 《环境科学研究》2015,28(12):1815-1822
为了分析冬季上甸子本底站气溶胶的变化特征,利用2012—2014年每年1月上甸子本底站的能见度、ρ(PM2.5)、ρ(BC)、ρ(CO)等数据,结合气象资料对上甸子地区气溶胶特性进行分析. 结果表明:2012—2014年每年1月地面月均风速分别为2.5、2.4和2.4 m/s,RH(相对湿度)分别为45.6%、59.5%和45.8%,ρ(PM2.5)分别为38.6、54.7和45.2 μg/m3,MSE(气溶胶质量散射系数)分别为5.3、5.9和4.9 m2/g. 虽然地面风速基本没有变化,但2013年1月的RH比2012年和2013年1月平均高出30%,并且同期ρ(PM2.5)和MSE也高于2012年和2013年1月. ρ(PM2.5)的增加导致太阳辐射减弱,但对SSA(气溶胶单次反照率)影响不大. 对2013年1月数据分析可知,各种RH区段下,能见度与ρ(PM2.5)均呈负相关,其中在80.0%10 km时,bext和Bext(分别以能见度和大气组分计算的大气消光系数)基本相当,二者在这3年的拟合斜率平均值高达0.99;当能见度<5 km时,2014年1月的bext和Bext之间不存在线性关系,2012年和2013年1月的bext和Bext的R2分别是0.88和0.92.   相似文献   

17.
为深入探究重污染地区气溶胶的消光特征和健康风险,于2019年冬季开展了太原市PM2.5主要化学成分和氧化潜势的分析.采样期间ρ(PM2.5)为(89.9±33.6)μg·m-3,其中水溶性离子和碳质气溶胶分别占到43.3%和33.8%,浓度较高的组分依次为:OC>SO42->NO-3>EC>NH+4>Cl->Ca2+.随着污染程度的增加,PM2.5中有机物(OM)和矿物尘的占比下降了5.8%和11.2%,而SNA(NO-3、 SO42-和NH+4)的质量分数由33.9%显著增加到56.0%.基于IMPROVE公式估算,太原市冬季大气颗粒物的平均消光系数为(453...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号