共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
广州市近地面臭氧时空变化及其与气象因子的关系 总被引:2,自引:0,他引:2
利用2012年1月至2016年2月广州市环境空气自动监测数据和气象观测数据,对广州市近地面臭氧的时空分布特征及其与气象因子的关系进行分析。结果表明:2012—2015年广州市臭氧日最大8 h滑动平均值的第90百分位数波动变化,年变化率依次为-14.3%、5.8%、-12.1%;广州市臭氧浓度呈现夏、秋季高,春、冬季低的显著季节变化特征;臭氧日最大8 h平均值的月均值和第90百分位数最高的月份一般分别出现在10月和7—8月;臭氧浓度的日变化曲线为单峰型,最大值一般出现在14:00或15:00;臭氧浓度随垂直高度的升高而增大,从低层(6 m点位或地面站)到中层(118 m和168 m点位)、中层到高层(488 m点位)臭氧日最大8 h滑动平均值的增长率分别为18.3%和39.1%;广州市中心城区臭氧浓度低于南北部城郊,夏、秋季高值区与夏、秋季主导风向相对应;臭氧浓度受降水、气温、相对湿度和风速等气象因子影响,臭氧浓度的超标是多种因素综合作用的结果。 相似文献
3.
于2023年2月15日—3月8日,采用中尺度数值预报模式/嵌套网格空气质量模式系统(WRF/NAQPMS),分析了初始场同化6项常规大气污染物及挥发性有机物(VOCs)对广东省臭氧(O3)预报的改进效果。 结果表明,同化6项常规污染物可显著降低O3预报的标准化平均偏差(NMB)和均方根误差(RMSE),NMB从-26%改善为-8%,RMSE从50.6μg/m3下降到35.0μg/m3。但对相关系数(r)的改善效果不佳,从0.51下降到0.49。相比于只同化常规6项污染物,同时同化VOCs对O3的预报效果改善较为明显,r从0.49提高到0.63。此外,对NMB和RMSE的改善效果也较好,NMB从-8%改善为-3%,RMSE从35.0μg/m3下降到30.1μg/m3。相比于不同化,同化6项常规污染物的改善效果显著,空气质量指数(AQI)等级预报准确率可提升10%以上,AQI范围预报准确率可提升40%以上。相比于仅同化6项常规污染物,再增加同化VOCs,AQI等级预报准确率和范围预报准确率均提升5%左右,改善程度不高。 相似文献
4.
介绍了大气污染气象潜势预报方法和兰州市大气污染气象潜势预报系统。通过2001年9-12月兰州市空气质量预报检验分析,表明该系统对首要污染物等级预报准确率在60%以上,对兰州空气质量预报具有较好的指示性。 相似文献
5.
6.
臭氧数值预报模型综述 总被引:4,自引:8,他引:4
光化学大气质量模型在研究臭氧(O_3)污染以及O_3预报方面具有核心作用,是O_3污染防治决策者的有力工具。文章结合目前中国及国际区域尺度光化学大气质量预报模型的研究与应用,重点论述与O_3有关的大气化学过程在数值预报模型中的数学表达和计算方法,阐述大气物理与大气化学过程在主流大气质量数值预报模型中的实现方法及其优势和缺陷,介绍用于数值预报模型的大气物理过程和湍流参数化方案的最新进展。就当前O_3数值模拟的主要输入资料进行讨论,强调那些易被忽视但又显著影响模型预报能力和效果的诸多因素以及模型效果评估的重要性。结合O_3与复合型大气污染的关系,强调区域大气质量数值预报模型的发展趋势与方向以及在大气环境管理方面的意义和作用。 相似文献
7.
基于多模式(NAQPMS、CMAQ、CAMx、WRF-Chem)空气质量数值预报业务系统的滚动预报结果,结合站点观测资料,评估了最优化集成方法在城市臭氧数值预报中的可行性和预报效果。一年的评估结果表明:当训练期为15 d时,最优化集成方法能够得到相对较好的结果。总体而言,最优化集成方法对城市臭氧浓度变化趋势和浓度水平的预报效果明显优于单个模式,且在大部分城市优于多模式的最优预报,其预报值和观测的相关系数提高0.11以上,均方根误差降低约10μg/m~3;该方法对城市臭氧污染等级的预报能力也明显优于单个模式,特别是轻、中度污染。此外,在模拟偏差较大的城市,最优化集成方法对预报效果的改进更为显著;在模拟偏差较小的城市,该方法仍可进一步提升预报效果。 相似文献
8.
利用2017年嘉善善西超级站臭氧(O3)及其前体物(NOx和VOCs)以及气象因子(温度、湿度、风速)逐小时数据,分析了2017年全年NOx和O3的变化特征以及春季(4—5月)、夏季(7—8月) NOx和气象因子对O3生成的影响,利用O3生成潜势(OFP)评估了VOCs大气化学反应活性,并通过潜在源区贡献(PSCF)和浓度权重轨迹(CWT)方法分析了嘉善春、夏季O3潜在源区贡献特征。研究发现:O3日变化特征为单峰结构,NOx为弱双峰结构。O3浓度在3—9月较高,春、夏季O3浓度峰值分别出现在15:00和14:00,春、夏季的NOx、O3日变化与2017年全年日变化趋势基本一致。NOx对O3存在滴定作用,且低湿高温有利于O3 相似文献
9.
基于2016—2018年安徽省68个国控环境空气质量自动监测站点的臭氧(O3)监测数据,研究分析了安徽省O3污染特征及其与气象因子的相关性。结果表明:安徽省O3污染程度呈现逐年加重趋势,并有显著的季节和月度变化特征。2016—2018年,各年度单月O3日最大8小时滑动平均质量浓度第90百分位数的最大值分别出现在9月、5月、6月。O3日变化趋势为典型的单峰形,各年度最低值出现在晨间07:00左右,最高值则是在15:00—16:00。全省O3浓度总体上呈现出北高南低的空间特征。温度、相对湿度与O3浓度分别呈现显著正相关、负相关,但在不同季节存在一定差异,其中,春秋季温度与O3浓度的相关性好于夏冬季,夏季相对湿度与O3浓度的相关性最为显著。O3浓度在平均风速为2.1~2.2 m/s时更易出现超标。中部和北部城市在东南风的作用下易出现O3超标并达到O 相似文献
10.
为研究云南省臭氧(O3)污染特征及其与气象因子的关系,基于统计学方法及Arc GIS空间差异分析、线性趋势分析、空间离散系数等方法,对全省16个市(州) 2015—2017年33个环境监测站点的监测数据进行了研究。结果表明:研究期间,O3逐渐取代其他大气常规污染物成为首要污染物,其浓度变化范围为19~138μg/m3。云南省各市(州) O3浓度年变化呈现周期性,月度峰值集中出现在春季(3—5月);日变化呈单峰形,峰值集中在14:00—17:00。O3浓度的空间格局由纵向集聚为主转变为横向集聚为主,各集聚区交错分布,低值区由西北部转移到西南部; O3浓度增长率为正的区域集中于东北部和中部,面积约为20.81万km2,占全省总面积的54.29%,其余半环状区域增长率为负。迪庆州O3污染情况与其他市(州)明显不同,且受其他市(州)传输的影响较小。气象因子对O3浓度的影响随时间和地域条件的变化而变化,对典型市(州)(迪庆州、丽江市、昭通市) O3浓度影响最大的为偏南风,影响的浓度区间为20~160μg/m3。 相似文献
11.
随着社会经济的快速发展,我国臭氧污染日益严重,因此,研发出能定量评估气象条件对臭氧污染影响程度的诊断指数,成为提高和改善气象服务质量的重要任务之一。利用中国大陆地区2018年温度、总云量、风速、风向、相对湿度等气象场数据与臭氧浓度数据,研究臭氧污染敏感气象条件,统计各气象因子分布在不同数值区间时发生臭氧污染事件的相对频率(即分指数),按照分指数最大值和最小值的差值大小进行排序,筛选出10个与臭氧污染密切相关的气象因子,将10个气象因子的分指数进行累加,即得出臭氧综合指数。随后,对各地构建臭氧综合指数时采用的气象要素进行统计,得到出现频率最高的3个气象要素,并参考这些气象要素构建了臭氧潜势指数。分别以臭氧潜势指数和臭氧综合指数对北京市2019年臭氧日最大浓度建立拟合预报模型,结果表明:两类指数的拟合预报值与实测值有着相似的变化趋势;利用臭氧综合指数计算得到的预报值与实测值的相关系数为0.76,优于利用臭氧潜势指数计算得到的预报值与实测值的相关系数(0.64)。 相似文献
12.
近年来,臭氧已成为许多城市环境空气的主要污染物之一。笔者分析了2020年海口市5个不同方位代表性监测站点逐小时空气质量监测数据及对应站点的气象要素监测数据。研究结果表明:海口市2020年环境空气污染程度为三级以上的天数有11d,其首要污染物均为臭氧。臭氧浓度高值时段主要出现在10-12月。浓度最大值主要出现在每日14:00-17:00,最小值出现在每日05:00-08:00。气象要素日均值与臭氧浓度相关性大小依次为最高温度>平均温度>相对湿度>降水量>日照时数>风速。台风外围下沉气流和东北气流的共同影响是导致海口市臭氧浓度超标的主要因素,下沉气流更有利于低层大气中臭氧的堆积,同时在东北气流影响下,上游区域污染物的传输也会导致海口市臭氧浓度增加。 相似文献
13.
14.
郑州市近地面臭氧污染特征及气象因素分析 总被引:1,自引:0,他引:1
利用国控站点空气质量在线监测数据,识别郑州市2015年近地面臭氧(O_3)污染状况、特征及与颗粒物和氮氧化物水平关系,并以烟厂站为例分析郑州市O_3污染与气象要素的相关性。结果表明:郑州市O_3日最大8 h平均值具有明显季节变化,呈现出夏季春季秋季冬季的特征,夏季岗李水库站O_3月均质量浓度为155.5μg/m3,其余站点月均质量浓度为110~150μg/m3;夏季O_3每日最大8 h浓度具有显著"周末效应",其他季节较不明显;O_3小时浓度日变化呈单峰型分布,在15:00—16:00达到峰值,早晨07:00达到谷值;前体物NOx小时浓度日变化呈双峰型分布,与O_3具有显著负相关性;气象因素相关性分析结果表明,郑州市O_3污染日多出现于高温、低湿和微风等条件,这些气象因素有利于O_3生成和累积。 相似文献
15.
在深入探讨2013—2015年青岛市区O_3污染随时间变化特征的基础上,系统分析了不同气象要素对O_3浓度的影响,并研究了前体物对O_3生成的影响及贡献。结果表明:青岛市区O_3第90百分位日最大8 h滑动平均值和超标率均在2014年达到最高值;O_3浓度在5—10月较高,12月至次年1月浓度最低;O_3日变化呈单峰型变化规律,白天浓度高,夜间浓度低。强太阳辐射、高温、相对湿度60%左右、风速4 m/s左右、偏南风等气象条件下易出现高浓度O_3。O_3的生成主要受前体物VOCs控制,且烯烃对O_3生成的贡献远高于烷烃和芳香烃,控制VOCs尤其是烯烃组分的排放可有效降低青岛市区O_3浓度。 相似文献
16.
使用天津市2013—2019年连续污染物监测数据和气象观测数据探讨臭氧污染现状,分析气象条件对臭氧浓度的影响,对不同臭氧污染过程案例进行天气分型,统计出现臭氧污染时的污染气象特征。结果表明:天津市臭氧浓度不降反升,2017—2019年连续3年超过国家二级浓度限值,2019年以臭氧为首要污染物的重污染天约占全年的1/2。春季和秋季臭氧污染日益突出,4月臭氧浓度已明显升高。天津市臭氧日最大8 h滑动平均质量浓度(O3-8 h)在日最高气温超过30℃、相对湿度20%~70%、西南风或东南风风速1~2.5 m/s、白天边界层高度1 400 m以下时较高。将臭氧污染天气形势分为春夏之交、盛夏高温和夏秋静稳3种类型。其中春夏之交天气型易出现臭氧与PM2.5协同污染;盛夏高温天气型平均风速较大,日最高气温大于35℃;夏秋静稳天气型平均风速小、边界层低。 相似文献
17.
运用2013—2016年贵阳市环境空气自动监测站臭氧(O_3)的监测数据以及气象观测资料,分析该地区近地面O_3浓度的时空变化特征及与气象因子的关联性。结果表明,近年来贵阳市近地面O_3小时浓度均值有逐年升高趋势,增速为1. 1~5. 0μg/(m~3·a)。O_3浓度昼间变化呈明显单峰形分布,08:00左右出现最低值,15:00—16:00达到最大峰值,浓度高值主要分布在12:00—18:00。日照时数每增加1 h,则近地面O_3日最大8 h平均浓度增加8μg/m~3左右,日照时数大于8 h,则近地面O_3日最大8 h平均浓度超过100μg/m~3; O_3小时浓度与温度呈正相关(r=0. 724,α=0. 01),与相对湿度呈负相关(r=-0. 531,α=0. 01)。当日照时数大于8 h、温度超过25℃、相对湿度小于60%时,贵阳市近地面O_3容易出现高浓度值。 相似文献