首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
与填埋、堆肥处理相比,生活垃圾焚烧处理在减量化和资源化方面有着巨大的优势,在未来将成为大城市生活垃圾的主要处理方式。采用生命周期评价方法,对不同余热利用和尾气处理方式下的生活垃圾焚烧处理方案对环境的影响进行评价。结果表明,在尾气处理系统中,干法、湿法、半干法3种酸性气体处理方式中,湿法处理的环境影响潜值最小,但是其资源耗竭系数最大。添加SNCR脱氮系统可以在酸性气体净化基础上将环境影响潜值降低70%左右,而资源耗竭系数变化不大。在单纯供热、供电和热电联供3种余热利用方式中,单纯供电的热利用效率最低,直接供热的热利用效率最高。  相似文献   

2.
Management of municipal solid waste incineration residues   总被引:12,自引:0,他引:12  
The management of residues from thermal waste treatment is an integral part of waste management systems. The primary goal of managing incineration residues is to prevent any impact on our health or environment caused by unacceptable particulate, gaseous and/or solute emissions. This paper provides insight into the most important measures for putting this requirement into practice. It also offers an overview of the factors and processes affecting these mitigating measures as well as the short- and long-term behavior of residues from thermal waste treatment under different scenarios. General conditions affecting the emission rate of salts and metals are shown as well as factors relevant to mitigating measures or sources of gaseous emissions.  相似文献   

3.
A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.  相似文献   

4.
介绍了生活垃圾焚烧过程中二恶英的产生机理、对人体的危害及控制措施,以某生活垃圾焚烧发电厂环境影响评价为例,提出了二恶英对人体健康风险评价方法,同类项目环境影响评价提供借鉴。  相似文献   

5.
Accelerated carbonation of municipal solid waste incineration fly ashes   总被引:3,自引:0,他引:3  
As a result of the EU Landfill Directive, the disposal of municipal solid waste incineration (MSWI) fly ash is restricted to only a few landfill sites in the UK. Alternative options for the management of fly ash, such as sintering, vitrification or stabilization/solidification, are either costly or not fully developed. In this paper an accelerated carbonation step is investigated for use with fly ash. The carbonation reaction involving fly ash was found to be optimum at a water/solid ratio of 0.3 under ambient temperature conditions. The study of ash mineralogy showed the disappearance of lime/portlandite/calcium chloride hydroxide and the formation of calcite as carbonation proceeded. The leaching properties of carbonated ash were examined. Release of soluble salts, such as SO4, Cl, was reduced after carbonation, but is still higher than the landfill acceptance limits for hazardous waste. It was also found that carbonation had a significant influence on lead leachability. The lead release from carbonated ash, with the exception of one of the fly ashes studied, was reduced by 2-3 orders of magnitude.  相似文献   

6.
Fresh municipal solid waste incineration residues (MSWIR) and a drilling core of 2-10 years old landfilled MSWIR were investigated to determine the alterations due to weathering in a landfill. Physical and geochemical properties and transformations of major components and heavy metals were analyzed for fresh and landfilled residues. Carbonates and hydroxides (10-12vol%) as major mineralogical compositions in the 8-10 years weathered MSWIR were observed by modal analysis of thin sections. Three step sequential extractions indicated that reducible phases, mainly the Fe, Al and Mn hydroxides increased with depth in the landfill. A pH controlled leaching test (including availability test and pH dependent leaching test) was then conducted. Results indicated lower concentrations of leachable contents at pH values from 6 to 10 for the four elements (Pb, Zn, Al and Fe) in the 8-10 years landfilled residues than in the fresh and 1-2 years landfilled residues. This means that 8-10 years weathered MSWIR became more stable than fresh landfilled residues. The reasons for the stabilization of these elements might be the hydration of Al and Fe during weathering in the landfill, which then results in the heavy metals adsorptions of these minerals.  相似文献   

7.
The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China.  相似文献   

8.
For investigation of the behavior of municipal solid waste incineration bottom ash in landfill, we have analysed bottom ash samples taken after the quench tank as well as after five months of storage in the laboratory for elements and organic constituents. Water extractable organic carbon, particulate organic carbon, amino acids, hexosamines and carbohydrates considerably decreased during the five months of storage and their spectra revealed microbial reworking. This shows that the organic matter present in the bottom ash after incineration can provide a substrate for microbial activity. The resulting changes of the physico-chemical environment may effect the short-term behavior of the bottom ash in landfill.  相似文献   

9.
Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H2) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify®) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.  相似文献   

10.
Multiple-scale dynamic leaching of a municipal solid waste incineration ash   总被引:1,自引:1,他引:0  
Predicting the impact on the subsurface and groundwater of a pollutant source, such as municipal solid waste (MSW) incineration ash, requires a knowledge of the so-called "source term". The source term describes the manner in which concentrations in dissolved elements in water percolating through waste evolve over time, for a given percolation scenario (infiltration rate, waste source dimensions, etc.). If the source term is known, it can be coupled with a model that simulates the fate and transport of dissolved constituents in the environment of the waste (in particular in groundwater), in order to calculate potential exposures or impacts. The standardized laboratory upward-flow percolation test is generally considered a relevant test for helping to define the source term for granular waste. The LIMULE project (Multiple-Scale Leaching) examined to what extent this test, performed in very specific conditions, could help predict the behaviour of waste at other scales and for other conditions of percolation. Three distinct scales of percolation were tested: a laboratory upward-flow percolation column (30cm), lysimeter cells (1-2m) and a large column (5m) instrumented at different depths. Comparison of concentration data collected from the different experiments suggests that for some non-reactive constituents (Cl, Na, K, etc.), the liquid versus solid ratio (L/S) provides a reasonable means of extrapolating from one scale to another; if concentration data are plotted versus this ratio, the curves coincide quite well. On the other hand, for reactive elements such as chromium and aluminium, which are linked by redox reactions, the L/S ratio does not provide a means of extrapolation, due in particular to kinetic control on reactions. Hence extrapolation with the help of coupled chemistry-transport modelling is proposed.  相似文献   

11.
A health risk assessment of long-term emissions of carcinogenic and non-carcinogenic air pollutants has been carried out for the municipal solid waste incinerator (MSWI) of the city of Taranto, Italy. Ground level air concentrations and soil deposition of carcinogenic (Polychlorinated Dibenzo-p-Dioxins/Furans and Cd) and non-carcinogenic (Pb and Hg) pollutants have been estimated using a well documented atmospheric dispersion model. Health risk values for air inhalation, dermal contact, soil and food ingestion have been calculated based on a combination of these concentrations and a matrix of environmental exposure factors. Exposure of the surrounding population has been addressed for different release scenarios based on four pollutants, four exposure pathways and two receptor groups (children and adults). Spatial risk distribution and cancer excess cases projected from plant emissions have been compared with background mortality records. Estimated results based on the MSWI emissions show: (1) individual risks well below maximum acceptable levels, (2) very small incremental cancer risk compared with background level.  相似文献   

12.
13.
Journal of Material Cycles and Waste Management - In this study, an average waste composition was determined using the Provincial Environmental Status Reports of 81 provinces in Turkey for 2019,...  相似文献   

14.
 Dry scrubber residue from municipal solid waste incineration (MSWI) was characterized to identify critical inorganic pollutants and to suggest a conceptual treatment method. The key methods used were thermal analysis, including thermogravimetry (TG) and differential thermal analysis (DTA), pHstat titration, qualitative X-ray diffraction (XRD), scanning electron microscopy (SEM), chemical equilibrium calculations, and statistics such as error propagation, principal component analysis (PCA), and empirical modeling based on factorial designs. Based on EU directives, the major inorganic pollutants Cd, Cr, Pb, and Zn were found. In addition, the pH was too high. With dry scrubber residue stabilization in mind, the impact of carbonation and hydration was assessed and judged to be encouraging. In particular, chemical equilibrium calculations showed that carbonation has considerable potential to lower the pH and the availability of Pb, Zn, and Cr. The impact of carbonation on the mobility of Cd was found to be small. During carbonation, a metal-trapping calcium aluminosilicate hydrate (C–A–S–H) phase is also formed. Both processes together have the potential to lead to a robust, reliable, and reasonable stabilization method for dry scrubber residue. However, to control these processes, the decisive factors need to be identified and their effects need to be quantified. Ca, Cl, Na, and K might be abundant components which would be mobile even after stabilization. Received: September 11, 2001 / Accepted: December 6, 2001  相似文献   

15.
Siting a municipal solid waste (MSW) incineration plant requires a comprehensive evaluation to identify the best available location(s) that can simultaneously meet the requirements of regulations and minimise economic, environmental, health, and social costs. A spatial multi-criteria evaluation methodology is presented to assess land suitability for a plant siting and applied to Santiago Island of Cape Verde. It combines the analytical hierarchy process (AHP) to estimate the selected evaluation criteria weights with Geographic Information Systems (GIS) for spatial data analysis that avoids the subjectivity of the judgements of decision makers in establishing the influences between some criteria or clusters of criteria. An innovative feature of the method lies in incorporating the environmental impact assessment of the plant operation as a criterion in the decision-making process itself rather than as an a posteriori assessment. Moreover, a two-scale approach is considered. At a global scale an initial screening identifies inter-municipal zones satisfying the decisive requirements (socio-economic, technical and environmental issues, with weights respectively, of 48%, 41% and 11%). A detailed suitability ranking inside the previously identified zones is then performed at a local scale in two phases and includes environmental assessment of the plant operation. Those zones are ranked by combining the non-environmental feasibility of Phase 1 (with a weight of 75%) with the environmental assessment of the plant operation impact of Phase 2 (with a weight of 25%). The reliability and robustness of the presented methodology as a decision supporting tool is assessed through a sensitivity analysis. The results proved the system effectiveness in the ranking process.  相似文献   

16.

Incineration is one of the key technologies in disposal of municipal waste, which produces municipal solid waste incineration (MSWI) residues with high valuable metal contents. The recycling strategy for the MSWI residues is typically focused on the recovery of scrap metals yielding processed municipal solid waste incineration residues (PIR) as the main byproduct. However, the PIR still contains valuable metals, particularly gold, which cannot be extracted by conventional methods. Here, we evaluated the feasibility of using the 0.5–2.0 mm grain size fraction of PIR containing 28.82 ± 1.62 mg/kg of gold as raw material for a two-stage extraction process. In the first stage the alkalic fine-grained PIR was acidified with a solution of 20% (v/v) of HCl-containing flue gas cleaning liquid that is obtained by the municipal waste incineration plant itself as a waste product. In the second stage we leached the acidified fine-grained PIR by thiourea with Fe3+ as an oxidant. Application of the thiourea-Fe3+ leaching system resulted in recovery of 16.4 ± 1.56 mg/kg of gold from the fine-grained PIR within 6 h of incubation. Due to high gold market prices, upscaling of the suggested technology can represent a suitable strategy for gold recovery from PIR and other MSWI residues.

  相似文献   

17.
Hydrogen generation from municipal solid waste incineration fly ash was investigated to understand the influences of contacting method, kinds of contact solution, liquid to solid ratio, and particle size distribution of materials. Redox properties of materials and hydrogen generation were also studied. The largest quantity of gas generated in contact with water was 29.1 ml/g-ash, most of which was hydrogen. Fluidized bed fly ash generated more gas than stoker fly ash. In order to calculate the hydrogen generation potential (the maximum quantity of gas generated in contact with water), a novel system using a Y-shaped test tube and NaOH was utilized. This method gives values which are related to the quantity of generated gas in contact with water. A relationship between the aluminum content and hydrogen generation potential was observed, especially for fluidized bed fly ash. The reducing potential of fluidized bed fly ash was higher than that of stoker fly ash. Only fluidized bed fly ash showed a positive correlation between aluminum content and reducing potential, and between reducing potential and hydrogen generation potential. These results suggest that fluidized bed fly ash contains more Al0 than stoker fly ash. Received: September 11, 1998 / Accepted: March 19, 1999  相似文献   

18.
Metallic phases in slags and their influence on the leaching characteristics were investigated. The proportions of metallic phase in four slags were 0.028%, 0.24%, 1.87%, and 3.05% by weight. The lead content was 10–248 mg/kg in bulk slag after metal removal, while in the metallic phase it was 579–7390 mg/kg. Lead concentrations in the metallic phase were more than ten times higher than in slags after metal removal. Lead was distributed in the metallic phase at 2.0%, 8.3%, 10.3%, and 47.4%. The concentrations of all metallic elements in metallic phases were much higher than in bulk slag. Iron, copper, and nickel had accumulated in magnetic metals, while aluminum and zinc were found in nonmagnetic metals. As regards chromium, manganese, lead, and tin, the proportion of metallic phases depended on the slag samples. By removing metallic phases, both water and pH 4 leachable lead decreased. The basic principles of melting residues containing lead are the separation of lead as a metal in reductive melting, and the containment of lead ions into uniform glassy particles in oxidization melting. Melting slag can be seen to contribute to environmental preservation by facilitating the recycling of materials through the separation of metals from melting slag. Received: February 21, 2000 / Accepted: July 27, 2000  相似文献   

19.
Municipal solid waste incinerator (MSWI) bottom ash was allowed to be disposed of with municipal solid waste (MSW) in landfill sites in the recently enacted standard of China. In this study, three sets of simulated landfill reactors, namely, conventional MSW landfill (CL), conventional MSWI bottom ash and MSW co-disposed landfill (CCL), and leachate recirculated MSWI bottom ash and MSW co-disposed landfill (RCL), were operated to investigate the environmental impact of the co-disposal. The effect of leachate recirculation on the migration of Cu and Zn in the co-disposed landfill was also presented. The results showed that the co-disposal of MSWI bottom ash with MSW would not enhance the leaching of Cu and Zn from landfill. However, the co-disposal increased the Cu and Zn contents of the refuse in the bottom layer of the landfill from 56.7 to 65.3 mg/kg and from 210 to 236 mg/kg, respectively. The recirculation of the leachate could further increase the Cu and Zn contents of the refuse in the bottom layer of the landfill to 72.9 and 441 mg/kg, respectively. Besides these observations, the results also showed that the co-disposed landfill with leachate recirculation could facilitate the stabilization of the landfill.  相似文献   

20.
Accelerated carbonation of municipal solid waste incineration residues is effective for immobilizing heavy metals. In this study, the contribution of the physical containment by carbonation to immobilization of some heavy metals was examined by some leaching tests and SEM–EDS analysis of untreated, carbonated, and milled bottom ash after carbonation that was crushed with a mortar to a mean particle size of approximately 1 μm. The surface of carbonated bottom ash particles on SEM images seemed mostly coated, while there were uneven micro-spaces on the surface of the untreated bottom ash. Results of Japan Leaching Test No. 18 (JLT18) for soil pollution showed that milling carbonated bottom ash increased the pH and EC. The leaching concentration of each element tended to be high for untreated samples, and was decreased by carbonation. However, after the milling of carbonated samples, the leaching concentration became high again. The immobilization effect of each element was weakened by milling. The ratio of physical containment effect to immobilization effects by accelerated carbonation was calculated using the results of JLT18. The ratio for each element was as follows: Pb: 13.9–69.0 %, Cu: 12.0–49.1 %, Cr: 24.1–99.7 %, Zn: 20.0–33.3 %, and Ca: 28.9–63.4 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号