首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
首采煤层群关键层是消除邻近煤层突出危险性行之有效的方法.以淮南新庄孜煤矿66210工作面为例,在综合分析采空区上覆岩层竖向3带以及瓦斯运移基本条件的基础上,将上被保护层所产生的卸压瓦斯运移路径简化为:被保护层→上覆岩层竖向裂隙→采空区→回风巷.为了保障首采保护层工作面的安全回采,提出并实施了卸压瓦斯综合治理技术,对被保护层卸压瓦斯、首采层顶板裂隙发育区富集瓦斯、采空区瓦斯进行强化拦截抽采.采用沿空留巷Y型通风方式消除上隅角瓦斯积聚,降低风排瓦斯量,工作面回风瓦斯体积分数在0.6%以下,实现了高瓦斯煤层群首采工作面的安全高效生产.  相似文献   

2.
为了提出合理的邻近层瓦斯治理技术,分析了上覆岩层采动裂隙场演化与瓦斯运移规律,并进一步得出了卸压瓦斯分区富集规律,提出了通过高抽巷抽采高位富集区瓦斯,通过走向低位钻孔抽采低位富集区瓦斯,并通过现场考察和数值模拟等手段确定了合理的高抽巷位置、抽采负压等参数。协同抽放技术在现场应用效果表明,工作面、上隅角以及轨道顺槽的瓦斯浓度都降到了0.4%以下,工作面的瓦斯超限问题得到了解决。研究结论对控制邻近层采动卸压瓦斯涌出,提高瓦斯抽采量和抽采率具有重要意义。  相似文献   

3.
以提高瓦斯抽采效果为目标, 某矿Ⅲ4423工作面为研究对象,采用理论分析、 数值模拟、现场试验等研究方法,研究了顶板高位钻孔条件下瓦斯抽采的主要技术参数 ,数值模拟出高位钻孔抽采瓦斯前采空区的瓦斯分布情况与运移规律,以及负压分别为 8、10 kPa时的高位钻孔瓦斯抽采效果。依据瓦斯流动“O”型圈理论与FLUENT数值模拟 分析,优化设计高位钻孔抽采瓦斯工艺参数并进行现场试验。结果表明:当高位钻孔抽 采负压为8 kPa、终孔位置调整到采空区裂隙带回风巷侧15~35 m范围内时,高位钻孔抽 采瓦斯效果最佳,采空区内瓦斯最高浓度明显降低,单个钻场最大抽采瓦斯量为19 821.74 m3,钻孔瓦斯浓度稳定在 20%~30%之间,最大值达到50%,实现了工作面有效 治理瓦斯和安全生产的目标。  相似文献   

4.
覆岩采动裂隙演化规律及其形态特征与卸压瓦斯抽采密切相关。运用自主设计的固气耦合相似模拟实验系统,通过模拟实验分析得到采动裂隙随着工作面的推进经历了产生、发展和闭合过程,其分布曲线呈马鞍状。结合采动裂隙演化规律及分布形态,分析了采动裂隙场的演化特征,其发育高度受主关键层影响明显,进一步明确了卸压瓦斯在裂隙发育各阶段发生运移和汇集的区域范围,为现场布置瓦斯抽采钻孔参数提供了设计依据。  相似文献   

5.
软岩保护层在深部低渗透强突出煤层群首采保护层选择中具有潜在的应用前景。在阐述下保护层开采覆岩移动与采场裂隙演化及瓦斯运移关系的基础上,以芦岭矿为工程背景,通过FLAC3D数值试验,研究软岩保护层开采后的卸压效果,并和不同层位的薄煤层开采卸压效果对比分析。结果表明,在采厚相同的情况下,开采10煤保护层相对于软岩保护层,卸压程度弱,保护范围小,保护效果差。软岩保护层开采后,被保护层处于弯曲下沉带的下限范围。受采动影响,有大量的离层裂隙生成。考察期范围内上覆被保护层(8、9煤层)瓦斯抽采率达62.9%,表明软岩保护层开采能够对上覆被保护层(8、9煤层)起到显著的卸压效果。研究结果可为其他矿区保护层开采选择提供参考,丰富国内保护层开采实践。  相似文献   

6.
为了完善现有煤与瓦斯共采技术,创新煤与瓦斯共采方法,对错层位巷道布置下的煤与瓦斯共采系统展开研究,利用相似模拟试验,分析错层位巷道布置覆岩运动情况,预测其开采围岩裂隙发育和瓦斯运移形式,提出了创新煤与瓦斯共采技术构想。研究结果表明:采空区覆岩三带高度随接续工作面的增加而增大,相邻采空区垮落矸石压实区呈现“O-L-O”形变化,多个相邻采空区覆岩出现大“O”形圈裂隙带;相邻采空区内瓦斯可实现相互运移,大“O”形圈裂隙带内赋存大量瓦斯气体;研究提出了地面钻井抽采瓦斯、走向高位瓦斯抽采巷和外错尾巷穿层钻孔3种煤与瓦斯共采技术,比传统巷道布置情况下的煤与瓦斯共采技术在安全、经济等方面更具优势。  相似文献   

7.
通过对目前瓦斯治理方法的对比,结合煤层瓦斯赋存与流动理论、回采工作面矿山压力规律及采场覆岩移动规律、采空区“O”型圈等理论,提出利用地面L型钻孔抽采煤层顶板裂隙带瓦斯的方法,用于缓解低位采空区抽采巷抽采负担,消除安全隐患。实践表明:地面L型钻孔使低位采空区抽采巷平均浓度由4.43%降低到3.37%,降低了24%,治理效果明显,该方法能为大采高综放工作面瓦斯治理工作提供新的思路。  相似文献   

8.
目前保护层开采卸压效果考察多以现场打钻测试被保护层瓦斯参数变化为主,为了更加系统、方便地掌握保护层开采过程中上覆被保护层裂隙发育、应力状态、膨胀变形及渗透特性变化情况,可综合运用试验手段对保护层开采卸压效果进行多指标评判。因此,基于常规相似材料模拟平台,应用渗流力学理论,开发出被保护层渗透特性测试系统,并以长平煤矿保护层开采为工程对象进行研究。结果表明:长平矿主采3#煤层作为被保护煤层,处于下保护层8#煤层开采所产生的裂隙带顶部,具备卸压增透的初始条件;伴随着8#煤层工作面的开采,上覆岩层次生裂隙经历了起裂、发育、张开、闭合等过程,3#煤层均经过增压区、卸压膨胀区、恢复区的转变,其膨胀变形量曲线大体呈"M"型分布,最大膨胀变形率约为0.774%,平均膨胀变形率约0.60%,大于0.30%;3#煤层渗透率同样经历动态发展过程,其原始渗透率为0.034×10~(-14)m~2,卸压区内最大渗透率1.125×10~(-14)m~2,为原始状态的33倍,增压区内渗透率有所下降,但仍远大于原始渗透率。因此,长平矿保护层开采使被保护煤层具备良好的卸压增透效果,进而为3#煤层卸压瓦斯渗流-运移规律及卸压瓦斯抽采钻孔设计提供了依据。  相似文献   

9.
基于降低采煤工作面瓦斯浓度和减少采空区瓦斯涌出的重要性,采用岩石破裂过程分析软件( RFPA2D)对鹤壁六矿21151顶分层工作面上覆岩层随工作面推进的运动情况进行了数值模拟.从中获取了上覆岩层的运动信息,得到了顶板由变形到损坏的全过程及损坏规律,并用经验公式对覆岩裂隙带高度进行了计算,综合判定工作面上覆岩层的裂隙带高度为12.3~44m.高位钻场抽采参数优化后,平均抽采量达到6.79 m3/min.  相似文献   

10.
为研究近距离薄煤层群上保护层开采期间邻近层卸压瓦斯对回采工作面瓦斯涌出的影响,进而有效杜绝保护层开采过程中工作面瓦斯积聚或超限等事故,结合煤岩体破碎前“应力-裂隙-渗透率”间关系,建立卸压瓦斯三维渗流模型。采用Flac3D软件,以新维煤矿煤层条件为工程背景,研究保护层开采过程采场渗透率沿纵向分布规律,确立下保护层C3煤层处于三维增渗区、C7与C8号煤层处于水平增渗区。基于此,提出“近场定向钻孔全覆盖抽采与远场穿层钻孔层间卸压抽采结合”的瓦斯治理技术模式,并开展现场试验,结果表明:试验工作面回风瓦斯浓度降低44.4%,绝对瓦斯涌出量降低52.3%,该模式可显著提高卸压瓦斯的治理效果,为类似工况下的保护层开采提出1种新的瓦斯抽采模式,具有一定的指导及借鉴意义。  相似文献   

11.
为确定大采高综采面高抽巷的合理位置,以李村煤矿1303工作面为研究背景,采用理论分析、数值模拟及现场监测等研究方法,对1303工作面覆岩裂隙发育特征、高抽巷空间位置对其围岩稳定性与抽采效果的影响规律进行系统研究。研究结果表明:高抽巷宜布置在覆岩裂隙发育区,远离回风巷道采动应力影响的位置;1303工作面覆岩破坏范围随推进距离增加,呈现先急剧增大后趋于稳定的趋势,工作面推进距离为300 m时,裂隙带高度稳定在50 m左右,形成瓦斯抽采的优势通道;高抽巷距离煤层顶板、回风巷越近,越易失稳,不利于长期抽采,综合考虑高抽巷不同位置时的瓦斯抽采效率及围岩稳定性,确定其合理位置分别是距离回风巷平距为35 m,垂距为45 m;结合现场瓦斯浓度监测结果,得出上隅角、工作面、回风巷瓦斯浓度最大值分别为0.42%,0.24%,0.33%,远低于瓦斯超限标准1%,进一步证明高抽巷层位的合理布置,可以提高瓦斯抽采效果。  相似文献   

12.
漏风对煤自燃有重要影响,研究漏风形成机制对工作面采空区防火具有重要的作用。针对采空区瓦斯抽采、上覆围岩裂隙发育对采空区漏风影响问题,以沙曲矿沿空留巷综放工作面为研究背景。根据采空区上覆煤岩特性选择经验公式计算采空区裂隙发育高度,分析了沿空留巷侧采空区上覆裂隙发育,现场实测了沿空留巷压埋管及高位钻孔中气体体积分数,并根据实测参数利用数值模拟分析了瓦斯抽采条件下采空区风流流场变化。结果表明:上覆裂隙成为采空区漏风通道,导通距离在27.2~37.2 m;在沿空留巷侧采空区回采距离100m,其氧气体积分数在10%以上,验证了采空区漏风去向;模拟结果显示,沿空留巷侧采空区立体空间范围内氧气体积分数均达到10%以上,模拟结果与实测基本保持一致。最终确定瓦斯抽采条件下沿空留巷的布置及煤岩裂隙发育是形成漏风通道的主要原因。  相似文献   

13.
李丽  陈志平  张以晨  焦雯淼 《安全》2021,42(6):61-68
为保障突出矿井近距离煤层群安全开采,本文基于上保护层开采时下邻近煤层卸压瓦斯治理的重要性,探讨采场动压影响下围岩变化与卸压瓦斯解吸运移的时空关系,研究瓦斯涌出形态和控制措施.结果表明:煤层组开采上保护层时,伴随工作面推进,底板煤岩系表现出时空滞后的蠕变特性;邻近层卸压瓦斯涌出按其对应工作面位置的活跃程度呈现出"四带"特征;被保护层卸压涌出占总瓦斯涌出量的70%以上,直接对被保护层进行目标抽采瓦斯是实现卸压瓦斯抽采最大化的最佳途径;在使用底板瓦斯道施工穿层钻孔抽采被保护层卸压瓦斯时,根据巷道顶板瓦斯层流情况,确定全负压通风并保持风速1.1m/s以上是保障安全作业环境优化条件.  相似文献   

14.
高抽巷现已被广泛用于治理工作面采动裂隙带及采空区瓦斯,而现场实际实施存在一定经验性,影响了高抽巷的瓦斯治理效果。针对现场高抽巷抽采流量低、工作面瓦斯易超限等问题,为提高高抽巷的瓦斯抽采效果,以余吾煤业为例,通过理论计算、现场考察、数值模拟、抽采效果分析,系统地研究了综放面高抽巷抽采瓦斯的布置层位。研究结果表明:综放面顶板冒落带高度约为18 m,裂隙带高度约为40 m,同时结合现场抽采效果分析,高抽巷宜布置在距煤层顶板40 m,与回风顺槽平距30 m处。研究结论对于综放面高抽巷的合理布置、提高瓦斯抽采效果具有一定的借鉴意义。  相似文献   

15.
为了研究远距离被保护层被保护区域预抽瓦斯效果,为其他区域同一保护层和被保护层开采提供依据和借鉴。基于保护层开采、煤与瓦斯突出防治等理论,首先对保护层开采防止煤与瓦斯突出机理进行研究,接下来计算了保护层开采保护范围,继而从瓦斯抽采量、抽采率和煤层顶底板相对变形量等方面对采用的地面钻孔和底板巷向上穿层钻孔等瓦斯抽采技术预抽被保护区域瓦斯效果进行了研究。结果表明:开采保护层有效减少或消除被保护层煤与瓦斯突出危险性,煤层瓦斯预抽率远大于30%,被保护层的最大膨胀变形远大于3‰。  相似文献   

16.
下保护层开采卸压瓦斯治理技术研究   总被引:4,自引:0,他引:4  
以潘一东矿1252(1)下保护层首采工作面为研究对象,采用分源预测法对下保护层工作面瓦斯涌出情况进行预测。计算结果表明,1252(1)工作面的瓦斯有六成左右来自上邻近13—1煤层,在本煤层回采期间提出了地面钻井、底抽巷穿层钻孔、高位钻场顶板走向钻孔、沿空留巷充填墙埋管等瓦斯治理方案,抽采率达到90%左右,工作面上隅角完全杜绝瓦斯浓度超限现象,保护范围内的13—1煤层的突出危险性也显著降低。  相似文献   

17.
为提高厚煤层采空区定向钻孔的瓦斯抽采效率,针对山西某高瓦斯矿井采煤工作面,采用理论分析和FLUENT数值模拟相结合的方法研究采动裂隙分域演化特性,提出覆岩裂隙场分域准则,确定定向钻孔布置区域与核心抽采布置范围,并在采空区现场开展定向钻孔分域抽采瓦斯试验。结果表明:破断裂隙密集区内,岩层断裂穿层裂隙发育较明显、瓦斯聚集显著,且钻孔稳定性高,是布置定向钻孔的最佳区域;并将与回风巷中心线水平距离3~13 m,与煤层顶板垂直距离10~18 m的区域设定为核心抽采区域。定向钻孔分域抽采试验中,单孔抽采瓦斯体积分数平均提升22.355%,单孔瓦斯抽采纯量平均提升1.295 m3/min,该结论验证了厚煤层采空区定向钻孔分域抽采方法的实用性与合理性。  相似文献   

18.
顶板走向高位钻孔瓦斯抽采技术的研究及应用   总被引:1,自引:0,他引:1  
为了解决由于采空区及邻近煤层瓦斯的涌人而造成的工作面上隅角瓦斯超限问题,提出了运用顶板走向高位钻孔瓦斯抽采技术,对采空区及邻近煤层瓦斯进行抽采,进而解决上隅角瓦斯超限问题的方法。利用分源预测法对工作面瓦斯涌出源进行了分析,并理论计算了采空区冒落带和裂隙带的高度范围,结合矿井具体情况,确定了合理的高位钻孔参数,并对作用效果进行了现场考察。研究表明:高位钻孔瓦斯抽采技术,能有效地解决工作面上隅角瓦斯超限问题,降低回风流中瓦斯体积分数,并提高了工作面的推进速度,有效地保证了工作面的安全回采。  相似文献   

19.
为了解决目前采用的直立型地面钻井抽采范围小、工作面所需钻井数量多及瓦斯流量和浓度偏低的问题,基于屯兰矿12507工作面Ⅱ段工程地质情况,提出地面“L”型钻井提高瓦斯抽采效率的理论和实践研究。通过PFC3D颗粒流离散元数值模拟软件对工作面覆岩采动影响进行模拟,得到采动影响下的覆岩结构、裂隙和孔隙率变化。研究结果表明:屯兰矿12507工作面Ⅱ段的垮落带高度为15.87 m,裂隙带高度为49.46 m,采空区上方15~50 m、沿倾向方向距离采空区边界20~100 m的范围内裂隙较发育,孔隙率高且稳定。在屯兰矿12507工作面Ⅱ段进行工程实践,得到地面“L”型钻井在抽采效率、工作面上隅角瓦斯治理及采空区瓦斯有效利用方面优于普通地面钻井抽采,抽采系统工作149 d瓦斯抽采浓度平均为52.52%,抽采纯量平均为9.48 m3/min,上隅角瓦斯浓度平均为0.21%,降低了矿井瓦斯灾害出现的风险并提高了煤层气的利用。  相似文献   

20.
薄煤层采煤工作面顶板穿层钻孔瓦斯抽采试验研究   总被引:1,自引:0,他引:1  
以凤凰煤矿1402采煤工作面为工程应用背景,针对煤层薄、瓦斯含量高、透气性差、地质条件差的特点,运用岩层移动理论,研究了采煤工作面采空区大流量、高浓度卸压瓦斯的运移路径和富集区域;借鉴了邻近煤矿瓦斯抽采经验,选择顶板穿层钻孔瓦斯抽采方法作为主要矿井瓦斯抽采方法之一,试验了该方法的合理瓦斯抽采参数;提高了采煤工作面瓦斯抽采率,消除了采煤工作面瓦斯积聚现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号