首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulphur cycling and its correlation to removal processes under dynamic redox conditions in the rhizosphere of helophytes in treatment wetlands are poorly understood. Therefore, long-term experiments were performed in laboratory-scale constructed wetlands treating artificial domestic wastewater in order to investigate the dynamics of sulphur compounds, the responses of plants and nitrifying microorganisms under carbon surplus conditions, and the generation of methane. For carbon surplus conditions (carbon:sulphate of 2.8:1) sulphate reduction happened but was repressed, in contrast to unplanted filters mentioned in literature. Doubling the carbon load caused stable and efficient sulphate reduction, rising of pH, increasing enrichment of S(2-) and S(0) in pore water, and finally plant death and inhibition of nitrification by sulphide toxicity. The data show a clear correlation of the occurrence of reduced S-species with decreasing C and N removal performance and plant viability in the experimental constructed wetlands.  相似文献   

2.
Spring wheat (Triticum aestivum L. cv. Turbo) was exposed to different levels of ozone and water supply in open-top chambers in 1991. Air was charcoal filtered (CF), non-filtered (NF) and CF plus proportional addition of ambient or twice ambient ozone (CF1, CF2). Seasonal means of O(3), taken over 24 h, were 2.3, 20.6, 17.3, and 34.5 nl litre(-1) for CF, NF, CF1 and CF2 treatments, respectively. A split-plot design was used to obtain two levels of water supply: one-half of the pots was irrigated sufficiently not to show any symptoms of drought stress; the others were exposed to low water supply and received 50% of these amounts. Using a steady-state porometer approximately 800 measurements of stomatal conductance (g(s)) were made on flag leaves from 68 to 106 days after sowing. The measurements yielded only small differences of maximum conductance between the two levels of water supply. Therefore, low water supply did not protect wheat plants against ozone injury via reduced stomatal uptake in this experiment. To describe the effects of environmental variables on the stomatal behaviour, boundary-line analysis and non-linear regression analysis were used. Besides microclimatic parameters, the ozone dose of flag leaves was introduced as an independent variable affecting stomatal aperture. A well-defined boundary line for ozone dose was found, suggesting that increasing ozone dose caused stomatal closure in wheat flag leaves. But at high ozone doses, co-acting senescence seems also responsible for the decrease in stomatal conductance. A multiplicative boundary-line model was used to predict stomatal conductance from combinations of environmental variables. In the test carried out with the measurements of stomatal conductance, the model accounted only for 40% of the variation of g(s). Generalized stomatal response patterns of the herbaceous growth form, the dependence of the variables' age and ozone dose and the lack of an important factor influencing stomatal response (water status of the plant) in the model, are suggested as explanations of the poor results of the test.  相似文献   

3.
Ahmad I  Pacheco M  Santos MA 《Chemosphere》2006,65(6):952-962
Pateira de Fermentelos (PF) is a natural freshwater wetland in the central region of Portugal. In the last decade, the introduction of agricultural chemicals, heavy metals, domestic wastes, as well as eutrophication and incorrect utility of resources resulted in an increased water pollution. The present research work was carried out to check the various oxidative stress biomarker responses in European eel (Anguilla anguilla L.) gill, kidney and liver due to this complex water pollution. Eels were caged and plunged at five different PF sites (A-E) for 48h. A reference site (R) was also selected at the river spring where no industrial contamination should be detected. Lipid peroxidation (LPO), catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST) and reduced glutathione (GSH) were the oxidative stress biomarkers studied. In gill, site A exposure induced a significant GST activity increase and site B exposure induced CAT activity increase when compared to R. Site C exposure showed a significant CAT and GPX activity increase. Data concerning site D exposure were not determined due to cage disappearance. Site E exposure displayed a significant CAT and GST activity increase. In kidney, site A exposure induced a significant CAT and GPX decrease as well as a GST increase. Site B exposure showed a significant decrease in GPX activity and GSH content. However, site C exposure demonstrated a significant increase in CAT and a decrease in GPX. Site E exposure showed a significant decrease in GPX and increase in GST. In liver, site A exposure showed a significant GST activity decrease as well as GSH content increase. Site B exposure showed a significant CAT, GST and LPO decrease. Site C exposure showed only GST activity decrease, while site E exposure induced a significant increase in GPX. These investigation findings provide a rational use of oxidative stress biomarkers in freshwater ecosystem pollution biomonitoring using caged fish, and the first attempt reported in Portugal as a study of this particular watercourse under the previous conditions. The presence of pollutants in the PF water was denunciated even without a clear relation to the main pollution source distance. The organ specificity was evident for each parameter but without a clear pattern.  相似文献   

4.
In a microcosm study, two aquatic macrophytes, Egeria densa and Ceratophyllum demersum were exposed to nominal concentrations of 0, 5, 20, 50, and 250 microg/L oxytetracycline (n=3), plus 20 microg/L oxytetracycline amended with additional nitrogen (N) and phosphorus (P). Responses were monitored bi-weekly over a six-week exposure period. Both plant species exhibited a significant decline in growth in the 250 microg/L oxytetracycline and the N- and P-amended units. Decreased light penetration resulting from accumulating oxytetracycline by-products appears to be the primary modifier in the growth of these plants. Increased susceptibility to oxytetracycline exposure was noted in some paired plantings (e.g., E. densa root development), relative to individual plants in these treatments, however, no clear explanation for this response is available. Based on the toxicity data generated in this study, we estimate that current concentrations of oxytetracycline in freshwater environments do not pose a direct risk to E. densa and C. demersum.  相似文献   

5.
This study was conducted to investigate the effect of external iron status and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake. Rice seedlings (Oryza sativa L.) were used as model plant, and were grown in artificially contaminated sandy soils irrigated with Murashige and Skoog (MS) culture solution. Arsenate uptake in roots and shoots of rice seedlings were affected significantly (> 0.05) while dimethylarsinic acid (DMAA) was not by the additional iron and chelating ligand treatments. Regardless of iron concentrations in the soil solution, HIDS increased arsenic uptake for roots more than EDTA and EDDS. Chelating ligands and arsenic species also influenced iron uptake in rice roots. Irrespective of arsenic species, HIDS was found to be more effective in the increase of iron bioavailability and uptake in rice roots compared to other chelants. There was a significant positive correlation (= 0.78, < 0.05) between arsenate and iron concentrations in the roots of rice seedlings grown with or without additional iron indicating that arsenate inhibit iron uptake. In contrast, there was no correlation between iron and DMAA uptake in roots. Poor correlation between iron and arsenic in shoots indicated that iron uptake in shoots was neither affected by additional iron nor by arsenic species. Compared to the control, chelating ligands increased iron uptake in shoots of rice seedlings significantly (< 0.05). Regardless of additional iron and arsenic species, iron uptake in rice shoots did not differed among EDTA, EDDS, and HIDS treatments.  相似文献   

6.
人工湿地宽叶香蒲对重金属的累积与机理   总被引:2,自引:0,他引:2  
宽叶香蒲(Typha latifolia L.)对环境胁迫具有较强的耐性。为了解宽叶香蒲对重金属的富集能力与耐性机理,通过野外调研,采集韶关凡口铅锌矿废水处理人工湿地中的宽叶香蒲与相应土壤样品,测定了土壤、植物的重金属总量与叶片亚细胞中重金属含量,分析了植物重金属含量与土壤重金属含量的相关性,并估算了宽叶香蒲地上部对重金属的提取量。土壤pH值在6.83~7.70之间,宽叶香蒲能有效降低土壤中的Cd、Pb、Zn、Cu和Mn的含量,对重金属的吸收主要受土壤重金属含量的影响,Pb和Cd的富集系数平均在0.5以上;除Fe外,叶片重金属主要分布在细胞壁和胞基质中。结果表明,宽叶香蒲是多种重金属的耐性植物,根系对重金属的富集与选择性向上运输、叶片细胞壁和胞基质对过量重金属的阻隔与结合作用是宽叶香蒲耐受重金属的重要机理。  相似文献   

7.
Aluminium accumulation by the freshwater snail Lymnaea stagnalis is correlated with behavioural depression which is ameliorated by addition of orthosilicic acid. We hypothesised that Si is relocated to the digestive gland in response to Al, leading to the formation of non-toxic hydroxyaluminosilicates (HAS). Exposure to 500 microg l(-1) Al for 30 days was associated with an initial period of behavioural depression, followed by apparent tolerance and subsequent depression, suggesting saturation of the cellular detoxification pathway during prolonged exposure. Exogenous Si (7.77 mg l(-1)) completely ameliorated all behavioural effects of Al but did not prevent its accumulation. In the presence of added Al, significantly more of this Si was accumulated by the tissues, compared to controls and snails exposed to Si alone. In snails exposed to Al plus Si, Al and Si concentrations were significantly correlated, with a ratio around 3:1 Al:Si, consistent with the presence of the non-toxic HAS protoimogolite.  相似文献   

8.
Environmental Science and Pollution Research - Freshwater biofilms have been increasingly used during the last decade in ecotoxicology due to their ecological relevance to assess the effect(s) of...  相似文献   

9.
Bacterial and meiofaunal abundance and biomass and their response to the disturbance induced by fish-farm biodeposition were investigated from March to October 1997 on a monthly basis at two stations of the Gaeta Gulf (Tyrrhenian Sea, Mediterranean Sea). The biopolymeric fraction of the organic matter was characterized by high concentrations which was similar at both fish-farming-impacted and control stations. Similarly, bacteria accounted for a small fraction of the biopolymeric organic carbon (< 1%), while the contribution due to auto-fluorescent cell biomass (i.e. prokaryotic and eukaryotic cells displaying auto-fluorescence) to the total biopolymeric carbon was quantitatively negligible (< 0.1%). Benthic bacteria appear to be sensitive to organic enrichment as their abundance increased significantly beneath the cage, whilst numbers of meiofauna was lower than in the control. Changes occurred also in terms of individual nematode biomass that increased as result of the biodeposition. A particularly useful tool appeared to be represented by the ratio of benthic auto-fluorescent cells to bacterial abundance, bacteria to meiofaunal biomass and auto-fluorescent cells to meiofauna biomass. All these parameters described well the impact due to biodeposition on the benthic environment as their ratios displayed significantly higher values in farm sediments, but recovered rapidly (15 days) to values observed in the control (i.e. undisturbed conditions) immediately after cage removal. Changes observed in the present study highlight that the increased organic loading determined a shift of the relative contribution of the different benthic components to the total biopolymeric carbon, so that in highly impacted systems total benthic biomass becomes increasingly dominated by microbial components.  相似文献   

10.
Individual specimens of Salmo trutta were captured, from four sampling sites in Galician rivers (NW Spain) affected by different types of contamination: diffuse urban waste, run-off from an unrestored dump at a copper mine and waste from a fish farm. The ages of the captured trouts were established and only those belonging to the 1+ age class were selected for study. The liver and kidney were removed from each fish and analysed to determine the tissue concentrations of Cu, Fe and Zn. The results obtained showed that: (i) the use of 1+ individuals allowed differentiation of contamination scenarios on the basis of the tissue concentrations of metal; (ii) the use of 1+ individuals allowed standardization of the time of exposure, which was sufficiently long for differential uptake to have taken place; (iii) liver tissue provided the best results as, less effort was required than for processing kidney tissue, and significant differences between sampling sites were detected because the intrapopulational variability in metal levels was lower than for kidney, and (iv) the levels of elements detected were not affected by basal tissue concentrations or residual concentrations due to past contamination, which older trouts may have been exposed to. In addition, the use of 1+ trout may provide better results in annual environmental sampling surveys.  相似文献   

11.
12.
Leung KM  Grist EP  Morley NJ  Morritt D  Crane M 《Chemosphere》2007,66(7):1358-1366
Chronic toxicity, growth and reproduction were measured in the freshwater gastropod Lymnaea stagnalis exposed to waterborne bis(tri-n-butyltin) oxide (TBTO) over a range of four nominal concentrations (0-10microg TBTl(-1)). Egg development was completely inhibited at 10microg TBTl(-1), whilst abnormal embryonic development was observed at 1microg TBTl(-1). For the solvent control and the 0.01microg TBTl(-1)treatment group, normal development of L. stagnalis was observed. Survivorship of hatchlings was significantly reduced by TBT at 1microgl(-1) while inhibition of shell growth of L. stagnalis was also observed at this concentration. The data were used to determine intrinsic growth rates (r) using two theoretical approaches (the Euler-Lotka equation and a Leslie Matrix). Both approaches showed that survival, fecundity and population growth rate were reduced at 1microg TBTl(-1). Interestingly, at 0.01microg TBTl(-1) snails showed a higher fecundity and growth rate than in the solvent control. The TBT concentration at which the r would equal zero (ECr(0)) and the population NOEC (No Observed Effect Concentration) were estimated. The population NOEC was defined as either the lower 95% confidence or lower 95% pointwise percentile limit of the ECr(0). Values obtained using the two different approaches were similar and thus a geometric mean was calculated to obtain a final representative population NOEC value for L. stagnalis of 2745ng TBTl(-1). The present data together with chronic toxicity TBT data for freshwater organisms, obtained from peer-reviewed literature, were used to construct a species sensitivity distribution (SSD). A predicted no effect concentration was then derived from the SSD (hazardous concentration at 5%, i.e., HC5 or 95% protection level). This SSD was compared with the SSD derived from saltwater species datasets. The HC5 value for saltwater species (3.55ng TBTl(-1); lower confidence limit: 1.93ng TBTl(-1)) was significantly lower than that for freshwater species (30.13ng TBTl(-1); lower confidence limit: 9.23ng TBTl(-1)), indicating that saltwater species are probably more susceptible to TBT than their freshwater counterparts.  相似文献   

13.
14.
To document the toxicity of copper and nickel in binary mixtures, freshwater amphipods Gammarus pulex were exposed to the metals given independently or as mixtures. Toxicity to Cu alone was relatively high: 96-h LC10 and LC50 were found at 91 and 196 μg L?1, respectively. Toxicity to Ni alone was very low, with 96-h LC10 and LC50 of 44,900 and 79,200 μg L?1, respectively. Mixture toxicities were calculated from single toxicity data using conventional models. Modeled toxicity was then compared with the measured toxicity of the binary mixture. Two kinds of mixtures were tested. Type I mixtures were designed as combinations of Cu and Ni given at the same effect concentrations, when taken independently, to identify possible interactions between copper and nickel. In type II mixtures, Cu concentrations varied from 0 to 600 μg L?1 while the nickel concentration was kept constant at 500 μg L?1 to mimic conditions of industrial wastewater discharges. Ni and Cu showed synergic effects in type I mixtures while type II mixtures revealed antagonistic effects. Low doses of Ni reduced Cu toxicity towards G. pulex. These results show that even for simple binary mixtures of contaminants with known chemistry and toxicity, unexpected interactions between the contaminants may occur. This reduces the reliability of conventional additivity models.  相似文献   

15.
Greenhouse and field studies were performed to examine the growth responses and possible phytoremediation capacity towards heavy metals of several Brassicaceae (Brassica alba, Brassica carinata, Brassica napus and Brassica nigra) and Poaceae (durum wheat and barley). Soils used featured total concentrations of Cr, Cu, Pb and Zn largely exceeding the maximum levels permitted by the Italian laws. Different organic amendments were tested such as a compost and the plant growth-promoting rhizobacterium Bacillus licheniformis. In the greenhouse experiment, plant length, leaf area index and shoots dry matter were evaluated periodically for the Brassicaceae examined. Whereas plant length, grains production, weight of 1,000 seeds, ear fertility and tiller density were determined under field conditions at the end of the crop cycle for wheat and barley. In general, the species tested appeared to be tolerant to high heavy metal concentrations in soil, and slightly significant differences were found for all parameters considered. A marked growth increase was shown to occur for Brassicaceae cultivated on compost- and bacillus-amended contaminated soils, with respect to non-amended contaminated soils. With some exception, higher growth parameters were measured for wheat and barley plants cropped from contaminated soils in comparison to non-contaminated soils. Further, bacillus amendment enhanced the length of wheat and barley plants in both non-contaminated and contaminated soils, while different effects were observed for the other parameters evaluated.  相似文献   

16.
This study focuses on the effect of plants on the biogeochemistry of sulfur species and the mobility of heavy metals in wetland sediments. Results showed that, in the presence of plants, sediments had elevated sulfate concentrations in the rhizosphere during the growing season, ranging from 0.2 to 6.20 mmol L(-1), whereas only a small difference in the sulfate profiles between vegetated and non-vegetated sediments was observed during senescence. Based on the sulfate concentration increase, the oxygen release rate from the roots to achieve the corresponding oxidation of sulfide was estimated as 0.85 g m(-2) day(-1). Evapotranspiration-induced advection is a major contributor to the transport of sulfate from the water column into the sediments, and also allows dissolved trace metals (i.e. Cd, Pb, and Zn) to be transported into the sediments and react with the acid volatile sulfide pool, resulting in the immobilization of trace metals in these sediments.  相似文献   

17.
Acidification of freshwater environments (terrestrial, surface water, and freshwater sediment) can significantly affect the geochemistry of Al, Cd, Pb and Hg; for example, metal mobility within soils (Al, Cd), the relative distribution of dissolved metal species (Al, Cd, Pb, Hg), and the sedimentation rate of metals in standing water bodies (Cd, Pb) can be altered by acidification. In this critical review of the literature over the last decade concerned with the interaction of acidification with these four metals, we have attempted both to provide an assessment of the current state of knowledge in this field and to emphasize those areas where significant progress has been made since the possible implications of environmental acidification on metal geochemistry became widely appreciated in the late 1970s. We have also indicated those areas which we feel are most in need of further research.  相似文献   

18.
Environmental Science and Pollution Research - Investigating whether the same hyperaccumulator shows a high accumulation potential for different species of the same heavy metal in the soil has...  相似文献   

19.
Spring wheat (Triticum aestivum L.) cv. Turbo was exposed to different levels of ozone and water supply in open-top chambers in 1991. The plants were grown either in charcoal filtered air (CF), not filtered air (NF), in charcoal filtered air with proportional addition of ambient ozone (CF1), or in charcoal filtered air with twice proportional addition of ambient ozone (CF2). The mean seasonal ozone concentrations (24 h mean) were 2.3, 20.6, 17.3, and 24.5 nl litre(-1) for CF, NF, CF1, and CF2 treatments, respectively. Ozone enhanced senescence and reduced growth and yield of the wheat plants. At final harvest, dry weight reductions were mainly due to reductions in ear weight. Grain yield loss by ozone mainly resulted from depressions of 1000 grain weight, whereas numbers of ears per plant and of grains per ear remained unchanged. Pollutants other than ozone did not alter the response to ozone, as was obvious from comparisons between CF1 and NF responses. Water stress alone did not enhance senescence, but also reduced growth and yield. However, yield loss mainly resulted from reductions in the number of ears per plant; 1000 grain weight was not influenced by water stress. No water supply by ozone treatment interactions were detected for any of the estimated parameters.  相似文献   

20.
Spring wheat (Triticum aestivum L. cv. Minaret) was grown at two different CO2 concentrations (367 and 650 micromol mol(-1)) in open-top-chambers from sowing until final harvest. Furthermore two different watering treatments (well watered and water stressed) and two soil types of different fertility were used. At final harvest, which took place at growth stage 92, plants were separated into different fractions. Elevated atmospheric CO2 caused an accelerated chlorophyll-a breakdown and increased growth and yield. Total shoot biomass was enhanced by 43%, grain yield by 46% and main stem yield by 19%. Water stress also accelerated chlorophyll-a breakdown but reduced total shoot biomass by 40%, grain yield by 45%, main stem yield by 30% and thousand grain weight by 6%. On average, soil fertility altered shoot biomass by 30%, grain yield by 39% and main stem yield by 25%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号