首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
Meteorological factors have an important influence on ozone (O3) concentration. In order to explore the characteristics and causes of near-surface O3 pollution in Henan Province, based on the datasets of ambient air quality monitoring stations and national basic ground climate stations in Henan Province from 2014 to 2020, this study examined the spatiotemporal characteristics of O3 pollution in Henan Province and the relationship between O3 and precursors and meteorological factors, and the potential sources of O3 in Henan Province were also explored. The results showed that: (1) In terms of temporal characteristics, the annual average O3 concentration of the maximum daily 8 h average (O3-8 h) in Henan Province generally decreased from 2014 to 2020, showing an ‘M’ type temporal evolution. For seasonality of O3-8 h concentration, it was highest in summer and decreased sequentially in spring, autumn, and winter, while both O3-8 h concentration and the number of days exceeding the standard peaked in June. In terms of spatial characteristics, the O3 concentration was generally lower in northern than in southern China, and lower in western than in eastern China. The areas with high concentrations were concentrated in southern Henan Province. (2) The O3-8 h concentration was significantly negatively correlated with the precursor NO2 and CO concentrations. (3) From the perspective of meteorological factors, O3-8 h concentration was positively correlated with air temperature and negatively correlated with relative humidity, indicating that high temperature (≥26 ℃) and low humidity (≤40%) were favorable for the increasing of O3-8 h concentration. Affected by the prevailing northerly winds in autumn and winter, the O3-8 h concentration in Henan Province showed a spatial pattern of low values in the north and high values in the south in autumn and winter, and the prevailing southerly wind in summer was conducive to the formation and maintenance of O3 in Henan Province. (4) In the summer of 2019, the main source areas of O3 and precursors increased gradually and changed from both inside and outside the province to mainly outside the province. Affected by the boundary cities and topographic conditions, O3 in Henan Province accumulated locally in summer. The study shows that the near-surface O3 pollution in Henan Province has significant spatial and temporal distribution characteristics, the pollution degree is generally reduced. The precursors of O3 and meteorological factors (temperature, relative humidity, wind) have significant effects on O3, and O3 transport paths and potential sources change with time in summer.   相似文献   

2.
张涵  姜华  高健  李红 《环境科学研究》2022,35(12):2657-2665
近年来我国O3污染现象频发,制约着我国环境空气质量优良天数比例的提高,弄清O3污染成因及影响因素对科学防治O3污染具有重要意义. 本文在整理分析大量已有研究基础上,梳理关于对流层O3污染形成机理方面的认识,将O3污染成因按影响程度大小分为主要内在原因、关键外在因子和重要影响因素,其中,前体物排放处于高位及高反应活性前体物的化学转化是O3污染形成的主要内在原因,环境因子及气候条件是关键外在因子,三维立体传输(平流层输入、垂直混合及水平传输)是重要影响因素. 未来我国需要从以下几个方面继续深入研究:① 加强PM2.5与O3复合污染成因机理和协同控制机制的科学研究;② 深化O3污染成因与来源的科学研究及应对措施研究;③ 科学优化大气O3评价指标;④ 持续推进O3污染防控措施实施.   相似文献   

3.
基于邯郸市2018年5~8月近地面O_3及其前体物(NO_x和VOCs)小时浓度数据,结合温度、相对湿度和风向风速等气象资料,分析邯郸市夏季O_3污染水平以及气象因子、前体物对其的影响;采用VOCs/NO_x比值法和基于Model-3/CMAQ模式系统的强力关闭法探究O_3生成敏感性,并运用等效丙烯浓度法识别出VOCs关键活性组分.结果表明:①观测期间,邯郸市O_3日最大8 h平均浓度(MDA8 O_3)在38.0~238.0μg·m~(-3)之间,污染天(MDA8 O_3160μg·m~(-3))占比高达44.7%,说明邯郸市夏季O_3污染较严重;②O_3与温度呈正相关、与相对湿度呈负相关,且在污染天相关性更显著;当温度高于28℃、相对湿度低于60%时,容易出现高浓度O_3现象,说明高温、低湿有利于O_3生成,也突出了本地光化学反应对O_3的重要贡献;污染天中,风向为西南、东南、东和东北风,且风速大于2.25m·s~(-1)时,邯郸市更容易出现高浓度O_3,在风速低于1.00m·s~(-1)时,也出现高浓度O_3现象,说明本地光化学生成和传输叠加是导致邯郸市高浓度O_3的重要原因;③O_3与NO_x、VOCs浓度在污染天反相关关系更显著,突出了本地光化学反应对O_3的重要贡献;基于Model-3/CMAQ的模式研究显示,邯郸市O_3生成受VOCs控制,削减VOCs对降低MDA8 O_3有一定的积极作用,同时存在单独减排NO_x的不利效应,因此控制VOCs,并重点控制烯烃(尤其异戊二烯和反式-2-丁烯)和芳香烃(尤其间/对-二甲苯和甲苯)是降低邯郸市MDA8 O_3的有效途径.  相似文献   

4.
安徽省O3浓度时空分异及其驱动因素研究   总被引:1,自引:0,他引:1  
基于2017—2018年安徽省132个空气质量监测站点的O3浓度观测数据及各月份的气象与前体物排放数据, 采用空间自相关分析、地理探测器等方法分析安徽O3浓度的时空分异及其驱动因素. 结果表明:安徽O3浓度的峰值出现在5月和6月, 超标率分别为31.4%和42.8%. O3浓度整体呈空间集聚特征, 高值区主要出现在安徽东北部的蚌埠、宿州、淮南和滁州4市, 低值主要分布在皖南山区. 气象要素是安徽省O3浓度格局形成的主控因素, 其中6月的边界层高度(q=0.644)、近地面太阳辐射(q=0.597)和风速(q=0.571)的影响最大, 且呈正向影响, 风速的增大和边界层高度的增加可能使得输入性污染增加. 降雨量(q=-0.532)和相对湿度(q=-0.559)呈负向影响, 且降雨带的移动是影响安徽夏季O3分布格局的一项关键因素. 本地前体物排放对安徽O3浓度的影响受到气象要素的驱动, 在夏季呈正向, 而冬季呈反向, 其中CO的影响相对较大. 6月气象要素与本地前体物排放的双因子交互驱动对O3浓度的空间分异具有增强作用. 边界层高度和近地面太阳辐射与本地前体物的组合解释力均大于0.7, 在不利的气象条件下, 应进一步加强对本地前体物排放的管控.  相似文献   

5.
北京气象塔夏季大气O3,NOx和CO浓度变化的观测实验   总被引:9,自引:7,他引:9  
以北京325m气象塔为观测平台,于2002年夏季进行了大气污染物臭氧(O3)及其前体物氮氧化物(NOx)和气象要素加强期的同步观测.对观测资料做了详尽的分析,结果表明:边界层内存在明显的臭氧浓度(用体积分数表示)垂直差异;中午120m高度层存在O3浓度最大值;低层O3浓度呈明显的日变化,且昼夜振幅较大;夜间高层(280m)O3的湍流混合和化学消耗较弱,可维持较高的浓度;局地光化学生成是白天边界层O3的主要来源;降水天气过程可造成O3及其前体物浓度的显著变化.  相似文献   

6.
北京城区夏季O3化学生成过程   总被引:1,自引:2,他引:1  
选取2007年7月1日—8月31日中的21个晴空日,利用观测资料和光化学箱模式计算了北京城区测点的O3生成速率G(O3)和O3生成效率OPE.结果表明,21个晴空日中G(O3)日最高小时值分布在(18~82)×10-9h-1之间;在O3污染和非污染日G(O3)最高值的平均水平无显著差异,且与Ox浓度之间不存在一致的对应关系,表明O3化学生成过程不能全面解释地面O3浓度的累积,物理传输过程对测点O3实测浓度有显著作用;各个化学过程对G(O3)的贡献率对比结果显示,HO2 在 NO向NO2的转化中贡献最大;OPE值分布在2.8~5.8之间,总体水平为4.1±0.1;OPE值与NOx浓度之间为非线性关系,OPE值随NOx浓度的增加而减少,表明消减测点附近VOCs排放能有效降低O3浓度.  相似文献   

7.
以2019年3—4月臭氧(O3)污染小高峰为例,应用空气质量模型CAMx-DDM法分析了成渝地区O3浓度对人为源前体物排放敏感性,并用2020年"新冠"疫情防控及生产恢复导致的污染排放同比变化情景进行模拟验证.模拟结果表明成渝地区O3对NOx的敏感性为负、对VOCs的敏感性为正,其中,重庆市主城区、主城区以西地区、川南城市群和成都平原西部地区敏感性较高,与其自身污染排放源分布密集有关.以典型城市重庆市主城区为例,2019年3—4月O3小时浓度对NOx和VOCs的敏感性平均值分别为-19.14 μg·m-3和7.25 μg·m-3,两者表现出相反的日变化规律,且主要受到本地及周边区域的影响,模拟结果显示在所有区域VOCs排放均削减25%的情况下,3月和4月月均O3日最大8 h浓度分别下降2.62 μg·m-3和3.59 μg·m-3.敏感性模拟得到2020年3月四川省和重庆市NOx排放量同比下降8.00%和22.40%,VOCs同比下降1.00%和7.92%;4月NOx排放量同比上升5.00%和9.50%,四川省VOCs同比持平,重庆市上升3.63%,与同期"新冠"疫情防控及生产恢复导致的实际排放情况非常一致.  相似文献   

8.
为了解我国不同气候背景城市O3污染及其与前体物的关系,选取北京市、沈阳市、银川市、成都市、南京市和广州市作为典型代表城市,基于这6个城市2014-2016年ρ(O3)、ρ(NO2)和ρ(CO)资料对O3与其前体物质量浓度变化特征及二者相关性进行研究.结果表明:①2014-2016年6个城市ρ(O3)年均值大小顺序依次为南京市>沈阳市>北京市>银川市>成都市>广州市,ρ(NO2)年均值大小顺序依次为北京市>成都市>南京市>沈阳市>广州市>银川市,ρ(CO)年均值大小顺序依次为北京市>银川市>成都市>沈阳市>南京市>广州市.2014-2016年除广州市ρ(O3)下降、沈阳市变化不明显外,其他城市ρ(O3)总体呈上升趋势;各城市ρ(NO2)和ρ(CO)普遍呈下降趋势.②广州市ρ(O3)夏季最高、春季最低,其他城市四季ρ(O3)大小顺序依次为夏季>春季>秋季>冬季;北京市、沈阳市和银川市四季ρ(NO2)和ρ(CO)大小顺序依次为冬季>秋季>春季>夏季,成都市、广州市和南京市为冬季>春季>秋季>夏季.各城市ρ(O3)和ρ(Ox)日变化呈单峰型,ρ(NO2)和ρ(CO)日变化呈双峰型.③6个城市城区ρ(O3)均低于清洁对照点,城区ρ(NO2)和ρ(CO)均高于清洁对照点,并且城区与清洁对照点O3及其前体物质量浓度差值随城市和月份变化存在一定的差异.④各城市ρ(O3)与ρ(NO2)和ρ(CO)均呈负相关,与ρ(Ox)呈显著正相关;城区ρ(O3)与ρ(NO2)和ρ(CO)的相关性均好于清洁对照点,清洁对照点ρ(O3)与ρ(Ox)的相关性则好于城区.⑤各城市ρ(O3)超标率随ρ(NO2)和ρ(CO)的增加均呈先迅速上升再快速减小,之后缓慢变化的特征,但ρ(O3)超标率峰值对应的ρ(NO2)和ρ(CO)有所差异.研究显示,日照条件较好的银川市、北京市和沈阳市O3与其前体物相关性较成都市、南京市和广州市强.   相似文献   

9.
张淼  丁椿  李彦  王桂霞  林晶晶  孟赫  许杨 《环境科学》2021,42(12):5723-5735
为认识山东省环境空气中O3的污染现状,基于2015~2019年国省控环境空气自动监测站的O3监测数据、2019~2020年4~9月气象代表站的气象数据及邻近环境空气站的O3监测数据,探究了山东省O3时空分布特征及与气象因素的关系.结果表明,山东省O3污染日益突出,年均ρ(O3-8h)(90百分位)和ρ(Ox)(O3 与NO2之和)升高速率分别为7.6μg·(m3·a)-1和7.0μg·(m3·a)-1,年均ρ(PM2.5)、ρ(CO)(95百分位数)和ρ(NO2)均逐步下降,下降速率均小于ρ(O3)上升速率.03污染呈现夏季高冬季低的"M型"或"倒V型"月变化特征,在6月或9月达到峰值,且污染月呈提前出现趋势.山东省年均ρ(O3-8h)(90百分位)呈现"内陆高,沿海低"的特点,并有区域均匀性发展趋势.相关性分析表明,山东省ρ(O3-8h)总体与日最高温度呈正相关,与相对湿度、气压和风速呈负相关,其中日 最高温度和相对湿度是O3-8h主控气象因子,气象因素对不同城市O3-8h超标率的影响具有显著差异.  相似文献   

10.
北京大气中NO、NO2和O3浓度变化的相关性分析   总被引:18,自引:8,他引:18  
臭氧(O3)是城市污染大气中的首要光化学污染物,其变化规律与氮氧化物(NOx=NO+NO2)关系密切.采用49C臭氧分析仪和42CTL氮氧化物分析仪对北京城区O3和NOx浓度进行了连续观测,时间为2004-08~2005-07.结果显示,O3和OX(O3+NO2)浓度在午后15:00左右出现峰值,NOx呈双峰态日变化,在07:00和23:00左右出现峰值.不同季节污染物的浓度变化存在差异,O3和NOx浓度分别在夏季和冬季达到最大.NOx浓度存在100×10-9(体积分数)的“分界点”,NOx低浓度时以NO2为主,NOx高浓度时NO占大部分.OX区域贡献和局地贡献存在明显的季节变化,前者主要受区域背景O3的影响,在春季最大,后者主要受局地NOx光化学反应的制约,在夏季最强,同时OX组分呈现显著的昼夜差异.  相似文献   

11.
为了解石家庄市主城区O3(臭氧)污染特征及其影响因子,基于2015-2018年石家庄市空气质量连续监测资料和同期气象数据分析了主城区O3污染总体特征及气象成因.结果表明:①石家庄市主城区大气光化学污染日益严峻,ρ(O3)日均值由2015年的47 μg/m3增至2018年的66 μg/m3,ρ(O3)超过GB 3095-2012《环境空气质量标准》二级标准限值的天数由2015年的20 d增至2018年的70 d.②ρ(O3)存在明显的季节性差异,呈夏季[(89±33)μg/m3] >春季[(69±25)μg/m3] >秋季[(40±26)μg/m3] >冬季[(28±16)μg/m3]的特征;ρ(O3)日变化呈单峰型分布,谷值出现在06:00-07:00,峰值出现在15:00-16:00,且15:00-17:00是ρ(O3)超标的高发时段.③ρ(O3)与气温呈指数关系,当气温为20~25、25~30、≥ 30℃时,ρ(O3)日均值分别为75、90及119 μg/m3.ρ(O3)在相对湿度为60%时存在拐点,当相对湿度≤ 60%时,ρ(O3)随相对湿度的增大而上升;当相对湿度>60%时,ρ(O3)随相对湿度的增大而下降.风速与ρ(O3)呈分段线性关系,当风速 < 2 m/s时,ρ(O3)随风速的增加而上升;当风速≥ 2 m/s时,ρ(O3)随风速的增加而下降.④影响石家庄市主城区ρ(O3)升高的污染源主要位于其东-东南-南方位,其次为东北-东方位,而西部和北部地区则较少.⑤石家庄市主城区ρ(O3)超标多发生在气温>20℃,相对湿度介于40%~70%之间,风速在1.5~3.0 m/s之间的气象背景下,经统计,当气象条件同时符合上述三项气象要素时,ρ(O3)超标天数占3-10月总超标天数的66.5%.研究显示,气温>20℃、相对湿度为40%~70%、风速为1.5~3.0 m/s的气象条件可初步作为石家庄市主城区O3污染的预警指标.   相似文献   

12.
深圳市夏季臭氧污染研究   总被引:4,自引:5,他引:4  
以2009年8月为例分析了深圳市夏季臭氧污染情况及污染气象特征,基于二维空气质量模式对臭氧污染控制进行数值模拟. 结果表明:深圳市8月各监测点均存在臭氧超标现象,污染形势严峻;副热带高压控制和热带气旋外围下沉气流是造成夏季出现高浓度臭氧的主要天气过程,此时大气边界层混合层高度在500~800 m,且近地面风速约在5 ms以内,不利于污染物扩散;臭氧的生成受前体物挥发性有机物(VOC)和氮氧化物(NOx)排放的共同影响,其中VOC排放的影响较大,深圳市臭氧控制应以降低VOC排放量为重点,模拟得出对VOC和NOx按25∶1~40∶1的比例协同减排可有效降低臭氧污染.   相似文献   

13.
黄哲  王建安  白岚 《内蒙古环境科学》2011,23(1):158-160,171
本文以包头市市区2007年和2008年的空气环境质量逐时监测数据和相应的地面逐时气象数据为基础,结合MM5中尺度气象模型拟合的高空气象数据,采用Pearson相关分析法,对空气环境中主要污染物二氧化硫、可吸入颗粒物的浓度与风速、近地面气温、降水、气压、相对湿度等气象因素的相关性进行了分析,探讨了逆温、静风等主要气象条件对空气环境中污染物浓度变化的影响,为改善城市空气环境质量提供技术支撑。  相似文献   

14.
本文以包头市市区2007年和2008年的空气环境质量逐时监测数据和相应的地面逐时气象数据为基础,结合MM5中尺度气象模型拟合的高空气象数据,采用Pearson相关分析法,对空气环境中主要污染物二氧化硫、可吸入颗粒物的浓度与风速、近地面气温、降水、气压、相对湿度等气象因素的相关性进行了分析,探讨了逆温、静风等主要气象条件对空气环境中污染物浓度变化的影响,为改善城市空气环境质量提供技术支撑。  相似文献   

15.
北京夏季典型臭氧污染分布特征及影响因子   总被引:17,自引:2,他引:17  
为研究北京地区O3分布特征及其影响因子,利用AML-3车载式大气环境污染激光雷达系统(下称AML-3)对北京地区2011年5月7日—6月9日的φ(O3)进行观测. 通过AML-3自带的污染物地面观测系统和差分吸收激光雷达,分析近地面、高空φ(O3)时空分布特征,并将φ(O3)与温度、风速及风向3个气象要素进行相关分析. 结果表明:近地面φ(O3)日变化明显,06:00左右为低谷,下午14:00左右达到峰值. 高空φ(O3)的空间分布很不均匀,上层气流易使O3富集层向下输送造成污染,同时稳定边界层对大气扩散的不利影响也是形成O3污染的重要原因. φ(O3)的日变化趋势与温度的日变化趋势呈显著正相关,R(相关系数)为0.74;上下层湍流交换使风速与近地面φ(O3)呈正相关,而水平扩散使二者呈负相关;通过分析风向的分布规律发现,东北风易造成北京地区O3污染.   相似文献   

16.
济南大气臭氧浓度变化规律   总被引:12,自引:3,他引:12  
殷永泉  单文坡  纪霞  由丽娜  苏元成 《环境科学》2006,27(11):2299-2302
利用近2a济南市区近地面大气O3浓度的观测数据,分析了O3浓度的分布特征及时间变化规律.结果表明,济南市区O3浓度以1a为周期呈明显的波动变化特征,城市光化学污染较重;1d当中O3浓度呈明显的单峰型变化,一般在午后达到最高值,而日出时分出现最低值;春季和夏季O3浓度高于秋季和冬季,而夏季和秋季O3浓度的日内变化幅度明显高于春季和冬季;受人们活动规律的影响,周末O3浓度的日内变化规律与平日有所不同.  相似文献   

17.
北京市郊区夏季臭氧重污染特征及生成效率   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究北京郊区夏季O3(臭氧)重污染过程特征及O3生成的光化学敏感性,基于2016年夏季在北京郊区开展的针对O3及其相关污染物的强化观测试验(7月23日—8月31日,共计40 d),分析了观测期间O3浓度[以φ(O3)计]变化特征、O3重污染过程主控因素与O3敏感性化学特征.结果表明:观测期间φ(O3)超标时有发生,最大小时φ(O3)为151.1×10-9,其中有15 d的φ(O3)最大8 h滑动平均值(O3-max-8h)超过了GB 3095—2012《环境空气质量标准》二级标准限值,占观测天数的37.5%;不同O3重污染过程成因有所不同,城市烟羽传输的污染物对郊区O3重污染过程影响显著(观测期间臭氧重污染过程:过程1,7月27—29日;过程3,8月9—11日;过程4,8月16日;过程5,8月21—24日),区域光化学污染对郊区O3重污染过程也有贡献(观测期间O3重污染过程2:8月4—6日);结合后向气流轨迹进一步辅助说明了不同重污染过程中O3的来源不同.研究还发现,观测区域存在反“周末效应”现象,说明观测区域周末受人为影响较为明显;基于观测数据计算的OPE(O3生成效率)分析了O3光化学敏感性表明,在有OPE值的22 d内NOx控制区和VOCs控制区出现的概率(41%)相等,即观测区域O3对NOx和VOCs均敏感;此外还发现,在O3重污染过程中光化学敏感性会随其反应进程发生改变,由NOx控制区逐渐转变为VOCs控制区.   相似文献   

18.
本文基于淄博市2019年18个自动监测站连续1 a的O3与前体物(NOx、 VOCs和CO),及常规气象监测数据(气温、相对湿度、风速和能见度),选取城区和郊区代表性站点,研究了O3与前体物的污染特征以及O3生成的影响因素.结果表明,淄博市2019年O3-8h浓度超标率为25.8%,超标天多出现在5~9月;城区NOx浓度高于郊区,而O3和VOCs浓度较低;各污染物的小时变化率具有明显的季节特征,秋冬季节O3上升和前体物下降时间均较春夏季节晚1 h左右,且O3生成累积的高峰时段缩短,城区O3浓度的整体上升速率高于郊区;对O3及各影响因素的相关性分析、偏相关分析及线性回归分析得到,O3与前体物和相对湿度呈负相关,与能见度、气温和风速呈正相关,各因素间存在相互影响;城区站点O3生成的主控因子有相对湿度、 NO<...  相似文献   

19.
夏季环境空气中臭氧和氮氧化物变化关系   总被引:7,自引:2,他引:7  
分析了宜昌市夏季高温日照天气下环境空气中臭氧和氮氧化物之间的变化趋势,研究了环境空气中光化学反应的时间和程度,提出了重视光化学反应污染和控制氮氧化物的一些建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号