首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT

This work explores the opportunities to address the setback in thermal energy storage of solar-based water heaters by uniting it with a suitable hybrid-nano composite phase change material (HNCPCM) in a static mode of operation. The experiments were conducted on a natural circulation all-glass evacuated solar water heating system (AGSWH). The investigation was steered in five cases such that the first case without any phase change material (PCM), the second with pure paraffin as PCM, and remaining three cases with three different mass percentage of HNCPCMs (0.5%, 1.0%, and 2.0% mass fraction of hybrid nanoparticles within PCM) in real-time solar exposure. The system was analyzed based on the first and second law of thermodynamics to assess the performance in all the five cases. Erstwhile, the hybrid nanoparticles were prepared by blending equal mass of SiO2 and CeO2 nanoparticles and characterized to gauge its thermal storage properties. The achieved results substantiated that the thermal conductivity had boosted with the accumulation of hybrid nanoparticles within the paraffin matrix, and maximum enhancement of 65.56% was attained with 2.0% mass fraction. The first law and second law investigations revealed that the incorporation of hybrid-nano composites improved the energy and exergy content of the system, distinctly. Among the experimented cases, HNCPCM with 1.0 mass% of hybrid nanoparticles remarkably yielded a better result of 19.4% and 1.28% improvement in energy and exergy efficiencies, respectively. Besides, it evidenced the necessity of choosing the right quantity of nanoparticles for achieving better overall results.  相似文献   

2.
ABSTRACT

This article aims to study the influence of the addition of graphene oxide nanoparticles (GO) to diesel/higher alcohols blends on the combustion, emission, and exergy parameters of a CI engine under various engine loads. The higher alcohols mainly n-butanol, n-heptanol, and n-octanol are blended with diesel at a volume fraction of 50%. Then, the 25 and 50 mg/L concentrations of GO are dispersed into diesel/higher alcohols blends using an ultrasonicator. The GO structures are examined using TEM, TGA, XRD and FTIR. The findings show that there is a reduction in pmax. and HRR when adding higher alcohols with diesel fuel. Regarding engine emission, there is a significant improvement in emissions formation with adding higher alcohols. The addition of GO into diesel/higher alcohols blends improves the brake thermal efficiency by 15%. Moreover, the pmax. and HRR are both enhanced by 4%. The CO, UHC and smoke formation are reduced considerably by 40%, 50 and 20%, respectively, while NOx level is increased by 30% with adding GO. Finally, adding high percentages of n-butanol, n-heptanol, and n-octanol with diesel fuel with the presence of GO has the potential to achieve ultra-low CO, UHC, and smoke formation meanwhile keeping high thermal efficiency level.  相似文献   

3.
ABSTRACT

In this study, a three-dimension (3D) computational model was proposed to investigate the flow and heat transfer characteristics of the intake grilles of two different fuel cell vehicles. The models of the intake grilles were constructed according to the actual sizes of two vehicles, namely, Roewe 950 and Toyota Mirai, considering the heat dissipation unit to simplify the heat transfer model of the vehicle. The results showed that relative to Roewe 950, Mirai intake air flow rate was approximately 10% higher, the heat transfer capacity was approximately 7% higher, and the intake grille area was larger. The coolant outlet temperature of Mirai was lower than that of Roewe 950, which was beneficial for the long term and stable operation of a fuel cell. This comparative study provided guidance for the intake grille and radiator design of fuel cell vehicles. The only difference between fuel cell vehicles on the market and conventional vehicles was that in the former, the internal combustion engine was replaced with a fuel cell stack, which had insufficient heat transfer capacity because of the reducing temperature difference. Increasing the intake grille area and the heat exchange capacity of the radiator were the key issues for the development of fuel cell vehicles. In this study, an optimal window opening angle of the radiator fin of 23° provided a maximal heat transfer coefficient.  相似文献   

4.
By establishing wind tunnel and employing electrical heating method, the heat transfer characteristics of flat plate were investigated under environmental wind condition. Both the uniform and linear heat flux boundary conditions were adopted for comparison purpose. Besides, the impacts of heat flux qwm, tilt angle α and wind incidence angle θ on heat transfer were explored in cases of windward and leeward facing positions. The local convection heat transfer coefficient hcx and average convection Nusselt number Nucm were obtained. The results show that, when α is small, there are two maximum values of hcx under linear heat flux boundary condition. As for Nucm, differences between the two boundary conditions seem indistinctive. At windward orientation, Nucm is not sensitive to α. While for leeward orientation, Nucm has a rapid decline progress with the increasing α, which indicates the tilt angle α is an important parameter to affect the heat transfer of plate. Finally, new correlations of Nucm have been developed, which were proven effective in engineering applications.  相似文献   

5.
ABSTRACT

Aquaculture raceway temperature has a direct impact on the aquatic specie being reared. In regions that undergo significant seasonal temperature variations, the thermal management of the raceway temperature becomes a challenge, directly impacting the production yield. This study investigates a novel approach to regulate the raceway temperature in a sustainable way by utilizing geothermal energy. A numerical energy model was developed to simulate heat transfer in a geothermal system encompassing both the individual borehole heat exchangers and their thermal interactions. Simulations were conducted for different configurations of the geothermal system over a complete seasonal cycle. Results show that flow rate, number of boreholes and the borehole spacing influence the temperature of the fluid at the raceway inlet. An increase in the number of boreholes provided better thermal regulation but an increase in the flow rate through the boreholes provided less thermal regulation. A borehole spacing of 6 m was found to be appropriate to reduce thermal interference. It was also observed that an increase in the fraction of the fluid passed through the geothermal system enhances the overall thermal regulation, with higher thermal regulation at lower flow rates. Results show that when 100% of the fluid passed through a 64 boreholes geothermal system, the average regulated raceway inlet temperature was 23% higher in winter months and 16% lower in summer months at the flow rate of 21.5 L/s compared to than at 43 L/s.  相似文献   

6.
One of the most important sources of CO2 emissions are the fossil-fuel fired plants for production of electricity. Removal of CO2 from flue gas streams for further sequestration has been proposed by the International Panel on Climate Change experts as one of the most reliable solutions to mitigate anthropogenic greenhouse emissions. When natural gas is employed as fuel, the molar fraction of CO2 in the flue gas is lower than 5% causing serious problems for capture. The purpose of this work is to present experimental validation of an Electric Swing Adsorption (ESA) technology that may be employed for carbon capture for low molar fractions of CO2 in the flue gas streams. To improve energy utilization, an activated carbon honeycomb monolith with low electrical resistivity was employed as selective adsorbent. A mathematical model for this honeycomb is proposed as well as different ESA cycles for CO2 capture.  相似文献   

7.
ABSTRACT

This paper discusses about the effect of feeder height and heat flux on the heat transfer characteristics of horizontal tube falling film evaporation in the thermal regimes. In order to investigate this, a two- dimensional CFD model was developed to perform simulation and results were compared and validated with published data available in the literature. Heat transfer co-efficients in the thermal regimes were determined from the CFD simulation and the results were recorded, analyzed and validated with the mathematical models available in the literature. The novelty of the current study is to predict the commencement of the fully developed thermal region over the tube from the simulation model under varying feeder height and heat flux. An effort was also made to measure the liquid film thickness around the tube from the CFD model in the thermal regimes. It is observed that angle of thermally developing region contracts and fully developed thermal region extends with the increase of the feeder height and heat flux. It is observed from the study that increase of heat flux by 10 kW/m2 resulted in increase of heat transfer co-efficient value by 10–12% average in thermally developing region and 12–15% average in fully developed region. Thinnest liquid film thickness observed between 85 and 127°angle. Shifting of thinnest region of liquid film upward from the mid tube with the increase of the feeder height and heat flux is noted.  相似文献   

8.
One of the important components of a car to control the temperature of a car's engine is the radiator. To increase the heat absorption capacity of the coolant/fluid used in the radiator with minimum pumping power, innovative fluids called nanofluids have become the main area of research these days. Therefore, with the development of new technologies in the field of “nano-materials” and “nano-fluids,” the physical and chemical properties of coolant/fluid can be improved which in turn improves the radiator and engine efficiency, and reduces radiator weight and size. In this article, the heat transfer by forced convection in nanofluids based on Al2O3 and SiC was studied experimentally and compared to that of base fluid in an automotive radiator. The nanofluid is mixed with ethylene glycol and the fluid is prepared by the sonication method. The nanofluids were prepared by varying the nanomaterials and the amounts of nanomaterials in the base fluid and their heat transfer performance in the radiator was analyzed using ANSYS FLUENT software. Approximately 15% and 12% increase in radiator efficiency by using Al2O3 mixed nanofluid and SiC mixed nanofluid, respectively.  相似文献   

9.
The optimized BCR sequential extraction procedure (proposed by the Standards, Measurements and Testing Programme (SM&T) of the European Union) was applied to seven topsoil samples from refuse dump sites for the determination of Cu, Zn, Ni, Pb and Cd. The metals were partitioned into four operationally defined chemical fractions: acid extractable, reducible, oxidizable and residual, and analysed using flame atomic absorption spectrophotometry, FAAS. The results were compared with total metal concentrations obtained using HNO3, HClO4 and HF digestion procedures. Results for total metal analysis ranged from - 15.55 to 43.45 for Cu, 37.15 to 222.35 for Zn, 5.15 to 12.10 for Ni, 10.30 to 93.05 for Pb and 0.35 to 3.75 for Cd in μgg−1 dry weight. The results of the partitioning study showed that zinc prevailed in the more soluble fractions and was distributed between the acid-extractable (32.4%) and the reducible (40.3%) fractions, whereas Pb was distributed mainly in the reducible fraction. Copper and nickel were predominantly associated with the reducible and residual fractions - 53.4, 33.3 and 51.1, 24.1% respectively. The ranking of the four fractions for the partitioning of cadmium was: reducible > residual > oxidizable > acid extractable. The percentage recovery for all metals when comparing total metal concentration with the fractional sum of the optimized BCR procedure, were of the order: Zn(93%) > Pb(83%) > Cu(78) > Cd > (68%) > Ni(63%).  相似文献   

10.
This article presents the performance analysis of a single-stage metal hydride-based heat transformer (SS-MHHT) working with three different alloy pairs, namely LaNi4.6Al0.4/MmNi4.15Fe0.85, LaNi4.61Mn0.26Al0.13/La0.6Y0.4Ni4.8-Mn0.2, and Zr0.9Ti0.1Cr0.9Fe1.1/Zr0.9Ti0.1Cr0.6-Fe1.4. The performances of the SS-MHHT are predicted by solving the conjugate heat and mass (hydrogen) transfer equations in cylindrical coordinates. The effects of various parameters such as heat output (TH), heat input (TM), and heat sink (TL) temperatures on the coefficient of performance (COPHT), specific heating power (SHP) and second law efficiency (ηE) are presented. The effects of overall heat transfer coefficient and mass ratio on the coefficient of performance (COPHT) and specific heating power (SHP) are also presented. Numerical results are compared with the experimental data reported in the literature, and a good agreement is found between them. The maximum COPHT of 0.436 and SHP of 54 W/kg are obtained for LaNi4.61Mn0.26Al0.13/La0.6Y0.4Ni4.8-Mn0.2 pair. For a given operating temperatures of TM = 358 K and TL = 298 K, the maximum temperature lift of about 50 K is predicted for Zr0.9Ti0.1Cr0.9Fe1.1 /Zr0.9Ti0.1Cr0.6Fe1.4 pair.  相似文献   

11.
Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO2. Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000–2000 μm, 250–1000 μm, 53–250 μm, and <53 μm). C and N accumulated in to the light (free- and intra-aggregate density fractions) and heavy fractions of whole soil and soil size fraction were determined. Soil size fraction obtained in cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32–34%), and microaggregates (1–1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250–1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical protection within macroaggregate structures thereby minimizing the impact of conversion of forest to cacao AFS.  相似文献   

12.
In this study, the top surfaces of piston and valves of a four-strokes and direct-injection diesel engine have been coated—with no change in the compression ratio—with a 100 μm of NiCrAl lining layer via plasma spray method and this layer has later been coated with main coating material with a mixture of 88% of ZrO2, 4% of MgO and 8% of Al2O3 (400 μm). Then, after the engine-coating process, ultra-low sulfur diesel (ULSD) as base fuels and its blend with used frying cottonseed oil derived biodiesel in proportion of 20%, volumetrically, have been tested in the coated engine and data of combustion and performance characteristics on full load and at different speeds have been noted. The results, which were compared with those obtained by uncoated-engine operation, showed that thermal efficiency increased, and engine noise reduced. Cylinder gas pressure values obtained from the diesel engine which has been coated with thermal barriers have been found to be somewhat higher than those of the uncoated-engine. Also, maximum pressure values measured in both engines and under the same experimental conditions through the use of test fuel have been obtained after TDC. Moreover, heat release rate and heat release have occurred earlier in the coated-engine. NOx emissions were increased while CO and HC emissions were remained almost the same with a little bit decrease.  相似文献   

13.
Abstract

In this article, the convective heat transfer coefficients of various agricultural products were investigated under open sun drying conditions. Data obtained from open sun drying experiments for eight agricultural products, namely, mulberry, strawberry, apple, garlic, potato, pumpkin, eggplant, and onion were used to determine values of convective heat transfer coefficient. The value of convective heat transfer coefficient was determined as 1.861 W/m2°C for mulberry, 6.691 W/m2°C for strawberry, 11.323 W/m2°C for apple, 1.136 W/m2°C for garlic, 8.224 W/m2°C for potato, 8.613 W/m2°C for pumpkin, 6.981 W/m2°C for eggplant, and 6.767 W/m2°C for onion. The experimental error in terms of percent uncertainty was also calculated.  相似文献   

14.
During injection of carbon dioxide (CO2) into deep saline aquifers, the available pore volume of the aquifer may be used inefficiently, thereby decreasing the effective capacity of the repository for CO2 storage. Storage efficiency is the fraction of the available pore space that is utilized for CO2 storage, or, in other words, it is the ratio between the volume of stored CO2 and the maximum available pore volume. In this note, we derive and present simple analytical expressions for estimating CO2 storage efficiency under the scenario of a constant-rate injection of CO2 into a confined, homogeneous, isotropic, saline aquifer. The expressions for storage efficiency are derived from models developed previously by other researchers describing the shape of the CO2-brine interface. The storage efficiency of CO2 is found to depend on three dimensionless groups, namely: (1) the residual saturation of brine after displacement by CO2; (2) the ratio of CO2 mobility to brine mobility; (3) a dimensionless group (which we call a “gravity factor”) that quantifies the importance of CO2 buoyancy relative to CO2 injection rate. In the particular case of negligible residual brine saturation and negligible buoyancy effects, the storage efficiency is approximately equal to the ratio of the CO2 viscosity to the brine viscosity. Storage efficiency decreases as the gravity factor increases, because the buoyancy of the CO2 causes it to occupy a thin layer at the top of the confined formation, while leaving the lower part of the aquifer under-utilized. Estimates of storage efficiency from our simple analytical expressions are in reasonable agreement with values calculated from simulations performed with more complicated multi-phase-flow simulation software. Therefore, we suggest that the analytical expressions presented herein could be used as a simple and rapid tool to screen the technical or economic feasibility of a proposed CO2 injection scenario.  相似文献   

15.
Abstract

In this work, gas flow and heat transfer have been numerically investigated and analyzed for both cathode/anode ducts of proton exchange membrane (PEM) fuel cells. The simulation is conducted by solving a set of conservation equations for the whole domain consisting of a porous medium, solid structure, and flow duct. A generalized extended Darcy model is employed to investigate the flow inside the porous layer. This model accounts for the boundary-layer development, shear stress, and microscopic inertial force as well. Effects of inertial coefficient, together with permeability, effective thermal conductivity, and thickness of the porous layer on gas flow and heat transfer are investigated.  相似文献   

16.
In order to decrease the heat rejection pressure of heat pump using pure working fluid, CO2 or R744, other natural component including hydrocarbons (R290, R600a, R600, R1270, R170, R601) and dimethyl ether (RE170) is added to CO2, respectively, and then six binary mixtures are achieved. By environmental and thermodynamic comparisons, R290 is selected to be the most appropriate component candidate to mix with CO2, and meanwhile to weaken the flammability and explosivity for pure R290. Then, the system performances of heat pump using mixture of CO2 and R290 were experimentally studied when R290 is added to CO2 with a small fraction, and compared with that of the pure CO2. The experimental test rig is designed and set up for the transcritical heat pump system. When the refrigerant charge is variable, the heating coefficient performance, optimum heat rejection pressure, compressor power, mass flow rate of refrigerant, and total heat coefficient of gas cooler were researched. The variation ratios of heating coefficient performance and heating capacity with deviation from the optimum refrigerant charge were also investigated. The optimum refrigerant charge of CO2/R290 is obtained and the research results show that the addition of R290 to CO2 can efficiently reduce the heat rejection pressure and improve the system performance. The results in the present work could provide useful guidelines for the design and operation of heat pump system using CO2-based mixture.  相似文献   

17.
ABSTRACT

The main challenge of utilizing ethanol in diesel engines in blending mode is the phase separation issue. Therefore, an attempt has been performed to enhance the stability feature of ethanol/Jatropha biodiesel (JME) blends by using n-butanol as co-solvent. The 10% by volume of n-butanol is added to the mixtures of 10% and 20% ethanol and 70% and 80% JME, which is denoted as JME10Bu10E and JME10Bu20E, respectively. The phase stability of the evaluated fuels is examined employing visual approach and Thermogravimetric analysis. These methods confirm that there is no phase separation for more than 2 months under ambient conditions. Then, the combustion and emission features are investigated utilizing a diesel engine run with different loads and constant speed. The findings demonstrate that the pmax. and HRR are increased by adding ethanol. The ignition delay is extended with the addition of ethanol while the combustion period is almost the same. The bsfc is decreased by adding ethanol compared to JME fuel. The CO, UHC, and NOx formations are reduced markedly by 40%, 40%, and 40%, respectively, with adding ethanol. Finally, using n-butanol and JME as co-solvents with ethanol supports the growth of renewable energy in the CI engine.  相似文献   

18.
Worldwide energy demand has been growing steadily during the past five decades and most experts believe that this trend will continue to rise. The amount of emitted harmful emission gases increases in parallel with increasing energy consumption. This increase has forced many countries to take various precautions, and various restrictions on emitted emissions have been carried. In this study, effects of addition of oxygen containing nanoparticle additives to biodiesel on fuel properties and effects on diesel engine performance and exhaust emissions were investigated. Two different nanoparticle additives, namely MgO and SiO2, were added to biodiesel at the addition dosage of 25 and 50 ppm. Fuel properties, engine performance, and exhaust emission characteristics of obtained modified fuels were examined. As a result of this study, engine emission values NOx and CO were decreased and engine performance values slightly increased with the addition of nanoparticle additives.  相似文献   

19.
Abstract

This article describes a novel flat plate heat-pipe solar collector, namely, the hybrid heat-pipe solar collector. An analytical model has been developed to calculate the collector efficiency as well as simulate the heat transfer processes occurring in the collector. The effects of heat pipes/absorber, top cover, flue gas channel geometry, and flue gas temperature and flow rate, on the collector efficiency were investigated based on three modes of operation, i.e., solar only operation, solar/exhaust gas combined, and solar, exhaust gas and boiler combined. Experimental testing of the collector was also carried out for each of these modes of operation under real climatic conditions. The results were used to estimate the efficiency of the collector and determine the relation between the efficiency and general external parameter. The modeling and experimental results were compared and a correlation factor was used to modify the theoretical predictions. It was found that the efficiency of the collector was increased by about 20–30% compared to a conventional flat-plate heat pipe solar collector.  相似文献   

20.
Arora, Kapil, Steven K. Mickelson, Matthew J. Helmers, and James L. Baker, 2010. Review of Pesticide Retention Processes Occurring in Buffer Strips Receiving Agricultural Runoff. Journal of the American Water Resources Association (JAWRA) 46(3):618-647. DOI: 10.1111/j.1752-1688.2010.00438.x Abstract: Review of the published results shows that the retention of the two pesticide carrier phases (runoff volume and sediment mass) influences pesticide mass transport through buffer strips. Data averaged across different studies showed that the buffer strips retained 45% of runoff volume (ranging between 0 and 100%) and 76% of sediment mass (ranging between 2 and 100%). Sorption (soil sorption coefficient, Koc) is one key pesticide property affecting its transport with the two carrier phases through buffer strips. Data from different studies for pesticide mass retention for weakly (Koc < 100), moderately (100 < Koc < 1,000), and strongly sorbed pesticides (Koc > 1,000) averaged (with ranges) 61 (0-100), 63 (0-100), and 76 (53-100) %, respectively. Because there are more data for runoff volume and sediment mass retention, the average retentions of both carrier phases were used to calculate that the buffer strips would retain 45% of weakly to moderately sorbed and 70% of strongly sorbed pesticides on an average basis. As pesticide mass retention presented is only an average across several studies with different experimental setups, the application of these results to actual field conditions should be carefully examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号