首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

In this paper, an artificial neural network-based control strategy is proposed for low voltage DC microgrid (LVDC microgrid) with a hybrid energy storage system (HESS) to improve power-sharing between battery and supercapacitor (SC) to suit the demand-generation imbalance, maintain state-of-charge (SOC) within boundaries and thereby to regulate the dc bus voltage. The conventional controller cannot track the SCs current rapidly with the high-frequency component that will place dynamic stress on the battery, further resulting in shorter battery life. The significant advantage is that in the proposed control strategy, redirections of unwaged battery currents to SCs for fast compensations enhance battery life span. The proposed control strategy effectiveness was investigated by simulations, including a comparison of overshoot/undershoot and settling time in dc bus voltage with a conventional control strategy. The results have been experimentally verified by hardware-in-loop (HIL) on a field-programmable gate array (FPGA)-based real-time simulator.  相似文献   

2.
ABSTRACT

In this study, a three-dimension (3D) computational model was proposed to investigate the flow and heat transfer characteristics of the intake grilles of two different fuel cell vehicles. The models of the intake grilles were constructed according to the actual sizes of two vehicles, namely, Roewe 950 and Toyota Mirai, considering the heat dissipation unit to simplify the heat transfer model of the vehicle. The results showed that relative to Roewe 950, Mirai intake air flow rate was approximately 10% higher, the heat transfer capacity was approximately 7% higher, and the intake grille area was larger. The coolant outlet temperature of Mirai was lower than that of Roewe 950, which was beneficial for the long term and stable operation of a fuel cell. This comparative study provided guidance for the intake grille and radiator design of fuel cell vehicles. The only difference between fuel cell vehicles on the market and conventional vehicles was that in the former, the internal combustion engine was replaced with a fuel cell stack, which had insufficient heat transfer capacity because of the reducing temperature difference. Increasing the intake grille area and the heat exchange capacity of the radiator were the key issues for the development of fuel cell vehicles. In this study, an optimal window opening angle of the radiator fin of 23° provided a maximal heat transfer coefficient.  相似文献   

3.
ABSTRACT

Estimation of State of Health (SoH) of Lithium-ion (Li-ion) battery is essential to predict the lifespan of batteries of an electric vehicle (EV). The efficient prediction of battery health indicates to the effective and safe operation of EV. However, delivering an effective and accurate method for the estimation of SoH in the real condition is truly a challenging task. The present study proposed a holistic procedure of combining both experimental and numerical investigations to conduct the fundamental study on coupled mechanical-electrochemical behavior of Li-ion battery. The proposed investigation highlighted the effect of stress on the capacity of the battery, considering capacity fade as an equivalent parameter to its health for real-time estimation of SoH. Finally, a simple model of Artificial Neural Network (ANN) is provided, which shows the linear dependency of stress with the SoH. The results obtained from the ANN model are validated with a Linear Regression (LR) model for a better understanding of the inspection. The predicted value of mean Square Error (MSE) and R square error in the ANN training model are found to be 0.000309 and 0.849687, respectively. Whereas for the test model, these predicted values are found to be 0.000438 and 0.819347, respectively.  相似文献   

4.
发展电动汽车被认为是有效缓解城市交通污染的重要措施,但大规模的电动汽车发展不仅有增加电力部门排放的风险,而且可能影响电网运营的稳定性。本研究以南京市为例,综合应用充电行为模式调研、蒙特卡洛模拟、COPERT模型、排放因子法等方法,系统研究了私家车、出租车和公交车三种类型电动汽车的充电特征及其对区域交通和电力部门排放的影响。结果表明,当三种车型的电动化率分别达到50%、100%和100%时,城市的NOx、PM_(2.5)、CO、VOCs和CO_2排放量将分别比基准情景减少378t、305t、20 223t、3649t和480万t。但是,SO_2排放增加了1152t,并且导致南京市电网的夏季峰值负荷增加10%。为更好地改善中国城市环境空气质量,应综合考虑电动汽车有序充电、协同促进清洁电力等发展策略,最大限度地实现电动汽车的环境效益。  相似文献   

5.
ABSTRACT

This paper solves an optimal generation scheduling problem of hybrid power system considering the risk factor due to uncertain/intermittent nature of renewable energy resources (RERs) and electric vehicles (EVs). The hybrid power system considered in this work includes thermal generating units, RERs such as wind and solar photovoltaic (PV) units, battery energy storage systems (BESSs) and electric vehicles (EVs). Here, the two objective functions are formulated, i.e., minimization of operating cost and system risk, to develop an optimum scheduling strategy of hybrid power system. The objective of proposed approach is to minimize operating cost and system risk levels simultaneously. The operating cost minimization objective consists of costs due to thermal generators, wind farms, solar PV units, EVs, BESSs, and adjustment cost due to uncertainties in RERs and EVs. In this work, Conditional Value at Risk (CVaR) is considered as the risk index, and it is used to quantify the risk due to intermittent nature of RERs and EVs. The main contribution of this paper lies in its ability to determine the optimal generation schedules by optimizing operating cost and risk. These two objectives are solved by using a multiobjective-based nondominated sorting genetic algorithm-II (NSGA-II) algorithm, and it is used to develop a Pareto optimal front. A best-compromised solution is obtained by using fuzzy min-max approach. The proposed approach has been implemented on modified IEEE 30 bus and practical Indian 75 bus test systems. The obtained results show the best-compromised solution between operating cost and system risk level, and the suitability of CVaR for the management of risk associated with the uncertainties due to RERs and EVs.  相似文献   

6.
Abstract

A number of cities around the world are associated with very high levels of private motor car usage, and Auckland provides an example of one of these ‘hyperautomobile’ cities. There are many problems with this system of transportation and dependence on the private car, including environmental, social and city design dimensions. Though there is a clear aspiration to move towards reduced levels of car usage in the city's transport and spatial planning strategies, there are major difficulties in implementation terms. We develop and consider future scenarios to 2041 to reduce these levels of motorization, and subsequent transport CO2 emissions, with a much greater use of public transport, walking and cycling, urban planning, and low emission vehicles. The current implementability of such a ‘sustainable mobility’ future is however questioned in the current political and social context, and critically debated in terms of the available governance mechanisms and the limited attempts to shape the behaviour of the public. We conclude by calling for a reconsideration of the policy measures being considered, including the range and levels of application and investment; with a much wider framing of the transport planning remit, and carried out within a much stronger participatory framework for decision-making.  相似文献   

7.
Rail has an important role to play in the development toward a sustainable transportation system. In this perspective, the European Brite Euram Project RAVEL (Rail Vehicle Eco-Efficient Design) has developed a rail sectorwide Design for Environment system to be used and standardized throughout the full supply chain. At the core of the system, quantitative environmental performance indicators for rail vehicles and components are used to incorporate environmental performance target levels in the product requirements and to measure and communicate achieved environmental performance. The concept of eco-efficiency is used to integrate both environmental and economical considerations. The methodology further builds on a standardized material list, standardized data formats, and proactive design guidance. To date, first steps are already taken to integrate the RAVEL project results into sector initiatives toward industrywide acceptance and standardization.Published online Note: This version was published online in June 2005 with the cover date of August 2004.  相似文献   

8.
Abstract

Electric vehicles (EVs) are currently being discussed as a promising means to increase the energy efficiency and sustainability of today's transport systems. While technological progress and cost reduction are certainly crucial topics for their successful diffusion, consumer acceptance is another issue that warrants further analysis. Based on a large online survey (N?=?969), we compared four consumer groups which differ in their likelihood to purchase an EV with regard to their socio-demographic characteristics, their willingness to pay (WTP) and their perceptions of EVs. The findings indicate that early users in Germany are most likely to be middle-aged men living with their families in a multi-vehicle household who have a higher WTP for an EV. Perceived compatibility of an EV with personal needs seems to be the most influential factor on the stated willingness to purchase an EV. With regard to the promotion of EVs, strengthening their environmental advantages and providing financial incentives for purchase are rated as important measures by a majority of the sample, while performance characteristics which are comparable to conventional vehicles seem to be less important for most participants. Based on the data analyses, we provide recommendations for measures regarding the further development and promotion of EVs.  相似文献   

9.
Abstract

The method of exergy analysis is presented for a SOFC power plant involving external steam reforming and fed by methane and ethanol. The optimal operation parameters of the integrated SOFC plant are specified after minimizing the existing energy and exergy losses. A comparison of methane and ethanol as appropriate fuels for a SOFC-based power plant is provided in terms of exergetic efficiency assuming the minimum allowable (for carbon-free operation) reforming factors for both cases. Then, a parametric analysis provides guidelines for practical design. It is concluded that the exergy calculations pinpoint the losses accurately and that the exergy analysis gives a better insight into the system's process.  相似文献   

10.
ABSTRACT: A procedure to apply genetic algorithm to optimize operation rules is proposed and applied to the LiYuTan Reservoir in Taiwan. The designed operation rules are operation zones with discount rates of water supply. The first step of the procedure is to predefine the shape of boundary curves of operation zones according to reservoir storage routing. Then, relatively fewer variables are used to describe the curves, and a last genetic algorithm (GA) is applied to optimize the curves. The procedure is applied to the newly built LiYuTan Reservoir for increasing domestic water demands. Shortage index is used to evaluate the performance of operation zones. A year is divided into 36 operational periods, with each month containing three operational periods. The shortage indexes calculated in operational periods are 9.81, 8.27, and 7.13, respectively, for the reservoir without operation rules, applying operation zones optimized by GA with encoding 36 storage levels for each curve, and adopting operation zones optimized by GA with encoding the curves with predefined shape. The average deficits for the three cases are 77.2, 43.6, and 33.3 (104 m3/day), respectively. The results indicate that operation zones optimized by the proposed procedure have smaller shortage indexes and lower average deficits. In addition, the optimized operation zones have less variation and thus are more practical for operation. Conclusively, the proposed procedure utilizing GA to optimize operation zones with predefined shape can provide better and realistic outcomes through limited iterations.  相似文献   

11.
A triple-objective optimal sizing method based on a dynamic strategy is presented for an islanded hybrid energy microgrid, consisting of wind turbine, solar photovoltaic, battery energy storage system and diesel generator. The dynamic strategy is given based on a dynamic complementary coordination between two different master-slave control modes for maximum renewable energy utilization. Combined with the proposed strategy, NSGA-II-based optimization program is applied to the sizing optimization problem with triple different objectives including the minimization of annualized system cost, the minimization of loss of power supply probability and the maximization of utilization ratio of renewable energy generation. The sizing results and the proposed strategy are both compared and analyzed to validate the proposed method in a real case of an islanded hybrid energy microgrid on Dong’ao Island, China.  相似文献   

12.
The adverse impacts of climate change are widely recognized as well as the importance of the mitigation of carbon dioxide (CO2). Battery driven vehicles are expected to have a bright future, since GHG emissions can be reduced. Lithium-ion (Li-ion) batteries appear to be the most promising, due to their high energy density. Recently, the discussion concerning adequate lithium carbonate (Li2CO3) resources is resolved. The current challenge is the needed increase in flow rate of Li2CO3 into society to foresee in forecasted demand. This research determines ten factors which influence the availability of Li-ion batteries for the EU27 in the coming decades. They are used in a system dynamics analysis. The results of this research show that undersupply can be expected in the EU27 until 2045 somewhere between 0.5 Mt and 2.8 Mt. Substitution of Li2CO3 in other end-use markets and recycling can relieve the strain on Li2CO3 supply to some extent. In 2050, 20% of the vehicle fleet in the EU27 can be battery electric vehicles (BEVs). The lack of resources in the EU27 and the geographical distribution of lithium in politically sensitive areas suggest that the shares of lithium available for the EU27 will be less than assumed in this research. The increase in flow rate shows to be the bottle-neck for a transition to (partly) battery driven vehicles in the EU27, at least when Li-ion batteries are used. Focusing on large-scale application of BEVs with Li-ion batteries in order to substantially mitigate CO2 emissions in transport is a futile campaign.  相似文献   

13.
14.
Singapore has pledged to attain 7–11% Business-As-Usual carbon emissions reduction by 2020. About 19% of CO2 contribution stemmed from road transport in 2005. Commercial vehicles, which uses mainly diesel, consumed 695 million litres diesel in 2012. An estimated 115,585 tonnes or 127 million litres cooking oils (derived from seeds/fruits) were consumed in 2010, in which the bulk of used cooking oil is re-incorporated into the food preparation process while only a small amount is being recycled into biodiesel or disposed into the sewerage. Nevertheless, the present research reveals that biodiesel derived from spent cooking oil has potential to be a viable fuel supplement. Surveys were carried out involving three market segments – suppliers, processors and end-users – to identify the barriers and obstacles in mass production of biodiesel. A key enabler of biodiesel as a fuel supplement towards a greener environment lies in government mandate/policies in promoting greater biodiesel usage.  相似文献   

15.
ABSTRACT

An eQUEST model was developed to conduct a simulation study of a natural gas engine-driven heat pump (GEHP) for an office building in Woodstock, Ontario, Canada. Prior to the installation of the GEHP, the heating and cooling demands of the office building were provided by rooftop units (RTUs), comprising of natural gas heater and electric air conditioner. Energy consumption for both GEHP and RTUs were monitored for operation in alternating months. These recorded energy consumptions along with weather data were used in the regression analysis. The developed eQUEST models were validated and calibrated with the regression analysis results with respect to the ASHRAE Guideline 14–2014. The eventual models were then applied to investigate the potential annual energy consumption, greenhouse gas (GHG) emission and energy cost savings achieved by using the GEHP in Woodstock, and other cities in Canada, particularly in Ontario.  相似文献   

16.
ABSTRACT

Human-induced climate change through the over liberation of greenhouse gases, resulting in devastating consequences to the environment, is a concern of considerable global significance which has fuelled the diversification to alternative renewable energy sources. The unpredictable nature of renewable resources is an impediment to developing renewable projects. More reliable, effective, and economically feasible renewable energy systems can be established by consolidating various renewable energy sources such as wind and solar into a hybrid system using batteries or back-up units like conventional energy generators or grids. The precise design of these systems is a critical step toward their effective deployment. An optimal sizing strategy was developed based on a heuristic particle swarm optimization (PSO) technique to determine the optimum number and configuration of PV panels, wind turbines, and battery units by minimizing the total system life-cycle cost while maximizing the reliability of the hybrid renewable energy system (HRES) in matching the electricity supply and demand. In addition, by constraining the amount of conventional electricity purchased from the grid, environmental concerns were also considered in the presented method. Various systems with different reliabilities and potential of reducing consumer’s CO2 emissions were designed and the behavior of the proposed method was comprehensively investigated. An HRES may reduce the annualized cost of energy and carbon footprint significantly.  相似文献   

17.
Abstract

This study compares energy use for food transport to a farmers' market in Sweden with energy use for transport in the conventional food system. The farmers' market was investigated through data sampling from on-site investigations. The conventional food system was studied with the aid of life cycle assessments reported in the literature. Overall, the study found no significant differences in levels of energy use for transport to the farmers' market compared with the conventional food system. For certain products, such as fresh fruits and vegetables, transport-related energy use was much lower in the local system although the season in Sweden for this kind of product is restricted to two or three months at the end of the summer. However, there is considerable potential to increase energy efficiency in local food systems by organizing the selling in new ways and by using more energy efficient vehicles.  相似文献   

18.
ABSTRACT

In order to improve the prediction ability for the monthly wind speed of RVR, the hybrid model of empirical wavelet transform and relevance vector regression (EWT-RVR) is proposed for monthly wind speed prediction in this study. Compared with empirical mode decomposition (EMD), empirical wavelet transform (EWT) can obtain a more consistent decomposition and have a mathematical theory. In order to testify the superiority of EWT-RVR, several traditional RVR models are used to compare with the proposed EWT-RVR method under the situation of the same embedding dimensions. The experimental results show that the proposed EWT-RVR method has a better prediction ability for monthly wind speed than RVR. It can be concluded that the proposed EWT-RVR method for monthly wind speed is effective.  相似文献   

19.
ABSTRACT

In this paper, a novel evacuated tube solar collector (ETSC) is first designed and built. Then, the impact of adding reflector, reflector plus single-axis sun tracker and reflector plus two-axis sun tracker to the built ETSC on the thermal efficiency of the ETSC is evaluated both theoretically and experimentally. In this regard, four identical versions of the proposed ETSC have been built and utilized in four collectors built and presented in this research work. The first collector is the same proposed built ETSC, the second collector is a parabolic trough solar collector comprising one built ETSC and a reflector (ETSC+R), the third collector is composed of one built ETSC, a reflector and a single-axis sun tracker all built in this study (ETSC+R+ ST), and the fourth collector consists of one built ETSC, a reflector and a two-axis sun tracker all built in this study (ETSC+R+ DT). Theoretical basis and concepts of the four collectors are formulated and analyzed in separate subsections. Theoretical results are outlined and highlighted at the end of each subsection. Experimental measurements and data obtained from the operation of the four collectors in the four seasons are presented that point by point verify theoretical results obtained in this study. To provide a comprehensive view, a techno-economic numerical comparison is performed between the four collectors. The following points, which are also the novelty and contributions of this work, are deduced from theoretical concepts, experimental data, and comparison provided in this study:

?There is no technical and economic justification for adding a reflector to an ETSC that results in forming a parabolic trough solar collector (ETSC+R) without any sun tracker.

?There is no economic justification for adding a single-axis sun tracker to a parabolic trough solar collector (ETSC+R).

?There is no economic justification for adding a two-axis sun tracker to a parabolic trough solar collector (ETSC+R).

?Comparing between a two-axis sun tracker and a single-axis sun tracker, adding the single-axis type to a parabolic trough solar collector (ETSC+R) is more advantageous.  相似文献   

20.
ABSTRACT

Microgrids are the key for integrating renewable energy from different sources into smart grid, that is why power grid evolves into a combination of interconnected microgrids. In fact, future power grids are undergoing this groundbreaking change that will help meet the increasing demand of electric power and reduce carbon emission. In this sense we study in this paper, based on measured data, a real case of energy management in the area of Beja located in Tunisia. Indeed, we propose a model for the power exchange which proves the potential of applying game theory in the development of both real-time pricing and energy management mechanism for an open electricity market. We also introduce a hybrid genetic algorithm to compute the Nash Equilibrium. Results show that the proposed smart energy management can decrease the real cost of power up to 20%, to divide the energy transmission losses by a factor of two and to reduce the carbon emission in the area of Beja.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号