共查询到20条相似文献,搜索用时 15 毫秒
1.
采用两级串联间歇曝气序批式反应器(intermittent aeration sequencing batch reactor,IASBR)处理高氨氮低碳氮比的垃圾渗滤液,研究在控温(25±2)℃,进水碳氮比(COD/TN)为3.0条件下的脱氮性能。进水氨氮(NH4+-N)和总氮(TN)浓度分别为(1 100±70)mg·L-1和(1 520±65)mg·L-1,1级和2级IASBR的水力停留时间(HRT)分别为5 d和4 d。运行结果表明,经1级IASBR处理后,出水TN浓度降低至约250 mg·L-1,其中以有机氮(TON)为主,NH4+-N浓度约25 mg·L-1;经2级IASBR处理后,出水TN和NH4+-N 浓度分别稳定在40 mg·L-1和20 mg·L-1以下,TON去除率高达90%以上。两级串联IASBR组合工艺表现出良好的深度脱氮性能,出水TN浓度稳定达到《生活垃圾填埋场污染控制标准》(GB16889-2008)中TN ≤ 40 mg·L-1的排放标准;同时,1级IASBR出水COD浓度高达1 150 mg·L-1,经过2级IASBR处理后出水COD降至约770 mg·L-1。 相似文献
2.
经长时间稳定化形成的矿化污泥中,含有种类丰富和数量繁多的降解性微生物,具有处理渗滤液的潜力。建立3个矿化污泥生物反应器,即C1(粉煤灰0%),C2(粉煤灰9.1%),C3(粉煤灰16.7%),以处理垃圾填埋场老龄渗滤液。在单级矿化污泥反应器中,当进水COD和NH3-N分别约为1350和900 mg/L时,水力负荷为17.7~70.8 L/(m3.d),COD去除率可超过65%,氨氮的去除率可超过94%。粉煤灰的加入一定程度上降低了COD去除率,但有助于氨氮的去除。在二级矿化污泥生物反应器中(即C3~C1串联),水力负荷为35.4 L/(m3.d)的工况下,当COD、TOC、IC和NH3-N分别为1 500~2 500,500~900,1 200~1 600和1 200~1 450 mg/L时,出水可达到COD<300 mg/L,TOC<180 mg/L,IC<100 mg/L,NH3-N<5 mg/L。但是,矿化污泥生物反应器对渗滤液总氮的去除率较低,仅为20%左右。 相似文献
3.
通过现场处理,对垃圾渗滤液的曝气-絮凝处理进行了研究。结果表明该方法对渗滤液的色度、COD、总磷去除率达80%以上,对氨氮去除率达60%以上。在此基础上提出了最优综合控制指标。 相似文献
4.
5.
矿化垃圾反应床处理垃圾渗滤液出水中的水溶性有机物 总被引:1,自引:1,他引:1
以矿化垃圾反应床处理垃圾渗滤液出水(以下简称尾水)为研究对象,采用国际上最常用的树脂联用法,对其进行梯度分离表征.研究结果表明,憎水性腐殖质对尾水COD和溶解性有机碳(DOC)的贡献分别为42.55%和45.12%,准亲水性物质对尾水中COD和DOC的贡献分别为34.89%和37.14%,憎水性腐殖质和准亲水性物质是尾水中水溶性有机物(DOM)的重要组成部分.近紫外区域吸光度分析发现,尾水中含有大量带共轭双键或苯环的有机物质,这些物质从尾水中去除后,尾水在近紫外区域的吸光度明显下降.分子量分布显示.尾水中DOM的分子量主要集中在2 000 u以下.元素分析和红外光谱结果显示,胡敏酸(HA)和富里酸(FA)带有苯环结构,存在醇羟基或酚羟基及羧酸官能团;准亲水性物质含有较多的羧酸官能团,另外存在一定置的羟基官能团,同时还可能含有三键和双键的结构. 相似文献
6.
改性矿化垃圾反应床处理填埋场渗滤液研究 总被引:4,自引:0,他引:4
在固液比(矿化垃圾与废水的质量比)为100,1,运行周期为3 h.水力负荷为0.08 m3/(m3·d)条件下,分别采用废铁屑、钢渣、蘑菇渣、秸秆作为改性材料进行矿化垃圾反应床处理填埋场渗滤液的工艺强化研究.结果表明,废铁屑对COD、色度、总氮和总磷的去除有显著的强化作用,COD、总氮和总磷去除率平均提高9.3%、17%和7.7%;钢渣不利于氨氮和总氮的去除,且需定期置换钢渣以维持其去除COD和总磷的强化作用;蘑菇渣和秸秆均需先进行合适的驯化降解处理,才能实现其去除COD、色度、氨氮和总氮的强化作用.从工程应用角度看,废铁屑是相对理想的一种改性材料. 相似文献
7.
在(35±1)℃条件下,采用IC厌氧反应器对天津大港垃圾焚烧厂垃圾渗滤液进行处理,研究了COD的去除效果、容积负荷、沼气产量和污泥的颗粒化,分析了循环比、上升流速对反应器的影响.结果表明,厌氧反应器经60 d的启动运行后,达到300 m3/d的设计水量,进水容积负荷达到17.7 kg COD/(m3·d),水力停留时间3.7 d,COD去除率高于80%,出水挥发酸(VFA)低于1 500 mg/L,平均每去除1 kg COD 产沼气0.42 m3,适宜的上升流速和循环比为2.0~5.0 m/h、8:1~20:1.启动结束后,厌氧消化污泥明显出现颗粒化,颗粒污泥的沉降速度达到了67.5~96.0 m/h,0.3~1.0 mm的颗粒污泥量占有74%. 相似文献
8.
矿化垃圾床+SBR工艺处理渗滤液的论证及研究 总被引:10,自引:0,他引:10
通过论证,选择了矿化垃圾床 SBR工艺进行渗滤液处理的研究。当两类渗滤液水质CODcr分别为22.648和13.236g/L,NH3-N分别为850和642mg/L时,采用矿化垃圾床 SBR工艺处理垃圾渗滤液取得了良好的效果。试验结果表明,处理后渗滤液CODcr降到小于300mg/L,NH3-N降到小于20mg/L的水平,达到了渗滤液的二级排放标准。 相似文献
9.
提出以二级矿化垃圾床为预处理单元,串联三维电极/电Fenton处理老龄垃圾渗滤液的组合工艺。矿化垃圾床处理后渗滤液中COD、氨氮、总磷、色度的去除率分别为80.55%、88.47%、98.32%和87.53%。通过单因素实验和正交实验,确定了三维电极/电Fenton法最佳工艺条件。经该组合工艺后,渗滤液中COD、氨氮、总磷和色度的最高去除率分别可达97.08%、95.24%、99.55%和96.92%,其中COD、总磷、色度这3个指标低于《生活垃圾填埋场污染控制标准》(GB16889.2008)表2规定的排放标准,为该组合工艺在实际中的应用提供重要理论依据。 相似文献
10.
采用化学还原法制备纳米四氧化三铁,与聚合氯化铝(PAC)制备MFPAC磁性混凝剂,利用混凝沉淀-矿化垃圾吸附预处理垃圾渗滤液,用单因素变量法确定实验的最佳运行参数。结果表明:MFPAC磁性混凝剂对COD和色度的去除效果优于单独投加混凝剂PAC,在纳米四氧化三铁与PAC的质量比为1:3、MFPAC的投加量为1.5 g·L-1、搅拌条件为转速为300 r·min-1下搅拌60 s、溶液pH值为7.5(垃圾渗滤液原水的pH值)、絮凝时间为30 min的最佳运行条件下,COD由5 810 mg·L-1降低到2 173 mg·L-1,色度由1 658倍降低到556倍,其COD去除率为62.6%,色度去除率为66.5%;利用矿化垃圾作为吸附剂处理MFPAC混凝处理后的出水,在矿化垃圾粒径小于2 mm、焙烧温度为700℃、吸附剂投加量为40 mg·L-1、pH值为9的最佳条件下,经过12 h的处理,COD和氨氮的去除率分别为56.7%和68.4%,最终出水的COD和氨氮的浓度分别为941 mg·L-1和343 mg·L-1;最终,MFPAC混凝沉淀-矿化垃圾吸附工艺对垃圾渗滤液COD、色度和氨氮的去除率分别为83.8%、78.5%和74.3%。 相似文献
11.
中晚期垃圾渗滤液的处理研究 总被引:9,自引:0,他引:9
垃圾渗滤液的处理一直是近几年污水处理领域的热点和难点问题。采用“吹脱-SBR-混凝沉淀-氯化”处理工艺对中晚期垃圾渗滤液进行实验研究,确定了各工艺的最佳运行参数,并对SBR的强化进行了新的探索。结果表明,该工艺可使垃圾渗滤液的COD值从1360mg/L下降到93.6mg/L,BOD,值从320mg/L降低到28mg/L,NH3-N的值从1098.6mg/L下降到16.1ms/L,出水色度接近无色,处理效果良好。 相似文献
12.
利用甲烷氧化菌菌液增加材料中甲烷氧化菌的数量,可以得到高甲烷氧化率的填埋场甲烷生物氧化覆盖材料。研究发现,渗滤液原水和渗滤液处理尾水均能促进甲烷氧化菌的生长,可利用渗滤液耦合矿化垃圾混合培养制备甲烷氧化菌菌液用于填埋场甲烷减排。填埋龄长的渗滤液原水有着较好的培养效果,得到的菌液在4 d内最高甲烷氧化速率达到2.68 mL/h,超过甲烷氧化菌培养液(nitrate minimal salt medium,NMS)的实验结果。渗滤液中总氮、无机碳、总有机碳和Ni元素的含量对甲烷氧化菌的培养过程影响较大,适用于甲烷氧化培养的渗滤液应满足:总氮1 400 mg/L,总有机碳55 mg/L,Ni元素0.4 mg/L,总磷含量较高。 相似文献
13.
14.
AS-SMBR工艺处理垃圾渗滤液实验研究 总被引:2,自引:0,他引:2
采用AS-SMBR工艺处理城市生活垃圾填埋场渗滤液,选择DO 2~4 mg/L、HRT50~60 h,在常温环境下运行结果表明:AS-SMBR工艺对垃圾渗滤液中COD和氨氮具有高效的去除效果,COD总去除率在50%~60%,NH3-N去除效率在95%以上;COD和NH3-N运行负荷分别为0.2~0.3 kg COD/(kg MLSS.d)和0.06~0.18 g NH3-N/(g MLSS.d);垃圾渗滤液生化系统对大分子物质的降解程度对膜去除效率有重要影响,两者对COD去除效率呈现波浪式交替变化。 相似文献
15.
针对垃圾渗滤液污染物浓度高、可生化性差等特点,采用准好氧矿化垃圾反应床+超声/芬顿联用技术对垃圾渗滤液进行预处理。准好氧矿化垃圾床处理后渗滤液中COD、氨氮、总磷、色度的去除率分别为80%、85%、92%和85%。通过单因素实验和正交实验,确定了超声/Fenton法最佳工艺条件。经该组合工艺后,渗滤液中COD、氨氮、总磷和色度的最高去除率分别可达96%、86%、94%和95%,且出水无臭,颜色为淡黄色,BOD5/COD从0.16增至0.35左右,可生化性基本满足后续生物处理需要,且COD、总磷这2个指标达到《生活垃圾填埋场污染控制标准》(GB16889—2008)规定的排放标准。 相似文献
16.
盐度对序批式反应器与间歇曝气膜生物反应器污水处理效果的影响 总被引:1,自引:0,他引:1
采用序批式反应器(SBR)与间歇曝气膜生物反应器(IAMBR)处理模拟生活污水,考察了进水盐度对两反应器污水处理效果的影响。研究表明,当进水盐度为0g/L(以NaCl质量浓度计,下同)时,SBR和IAMBR对总有机碳(TOC)、NH4+-N及TN的去除能力相当,IAMBR未表现出明显的优势;当进水盐度为10g/L时,SBR和IAMBR对TOC、NH4+-N及TN的去除产生明显的差异。IAMBR因为膜的截留与微生物富集作用,对污染物的去除无明显变化,依然保持了较高的污染物去除率,而SBR受盐度冲击影响较大,TOC、NH4+-N及TN的去除率均大幅降低,说明IAMBR具有较高的抗盐度冲击性能。 相似文献
17.
18.
19.
20.
垃圾填埋场渗滤液生物处理尾水的性质研究 总被引:2,自引:0,他引:2
采用多种先进测试分析仪器对不同月份的垃圾填埋场渗滤液生物处理尾水(简称渗滤液尾水)进行了全面的分析.结果表明,经生物处理后的渗滤液尾水难以进一步生物降解,仍然有很强的污染性,COD和NH3-N仍分别高达419~622、12.4~174.0 mg/L,未达到国家排放标准,且仍含有多种环境优先控制污染物.除有机物外,渗滤液尾水中还有部分无机类物质贡献COD,TN主要由无机氮构成.渗滤液生物处理的效果与温度关系密切,6、9月的处理效果明显好于3、12月. 相似文献