共查询到20条相似文献,搜索用时 0 毫秒
1.
为研究盘锦市秋冬季节大气PM_(2.5)中碳组分的污染特征和来源,于2016年10月和2017年1月采集盘锦市3个点位PM_(2.5)样品,通过OC/EC比值法,EC示踪法以及主成分分析法对PM_(2.5)中碳组分进行污染特征分析及来源解析.结果表明,盘锦市秋冬季节PM_(2.5)浓度均超过环境空气质量标准(GB 3095-2012)二级标准,秋季OC和EC的平均浓度为10.02μg·m~(-3)和3.91μg·m~(-3),冬季为16.04μg·m~(-3)和5.62μg·m~(-3);采样期间秋冬季节OC/EC均大于2.0,说明各采样点位在秋冬季均可能存在二次污染,Spearman相关分析及线性拟合可知开发区OC与EC来源复杂,第二中学及文化公园OC和EC可能具有同源性;通过EC示踪法对SOC进行定量估算,得出秋季SOC浓度为7.21μg·m~(-3),冬季为23.07μg·m~(-3),对结果进行不确定性分析,可知秋冬季节SOC不确定性的绝对误差和相对误差均在可接受范围内;通过主成分分析得出盘锦市秋冬季节PM_(2.5)中碳组分主要来源于煤烟尘,生物质燃烧以及机动车尾气. 相似文献
2.
北京南部城区PM2.5中碳质组分特征 总被引:2,自引:3,他引:2
为了解《大气污染防治行动计划》实施后北京市大气PM2.5中碳质组分特征,于2017年12月至2018年12月在北京污染较重的南部城区进行了PM2.5连续采样,对其中的有机碳(OC)和元素碳(EC)进行了全面研究.结果表明,北京大气PM2.5、OC和EC浓度变化范围分别为4.2~366.3、 0.9~74.5和0.0~5.5μg·m-3,平均浓度分别为(77.1±52.1)、(11.2±7.8)和(1.2±0.8)μg·m-3,碳质组分(OC和EC)整体占PM2.5的16.1%.OC质量浓度季节特征表现为:冬季[(13.8±8.7)μg·m-3]>春季[(12.7±9.6)μg·m-3]>秋季[(11.8±6.2)μg·m-3]>夏季[(6.5±2.1)μg·m-3],EC四季质量浓度水平均较低,范围为0.8~1.5μg·m-3.二... 相似文献
3.
为研究《打赢蓝天保卫战三年行动计划》等政策实施后北京及其周边区域夏季环境PM2.5含碳组分特征及来源,2019年7月分别在北京城区与河北郊区的2个站点同步连续采集大气PM2.5样品,利用热光碳分析仪分别测定了有机碳(OC)和元素碳(EC)及其组分的质量浓度;通过最小OC/EC比值法、最小相关系数法估算了二次有机碳(SOC)浓度;利用主成分分析、后向轨迹分析等方法探究了含碳气溶胶的来源。结果表明:夏季北京城区PM2.5中ρ(OC)和ρ(EC)平均分别为(6.34±0.64),(1.96±0.29)μg/m3,分别占ρ(PM2.5)的18.65%和5.78%;河北郊区PM2.5中ρ(OC)与ρ(EC)平均分别为(6.29±0.79),(3.54±0.63)μg/m3,分别占ρ(PM2.5)的17.69%和9.53%。2种方法估算出北京城区的ρ(SOC)分别为(3.35±0.59),3.98μg/m3,分别占ρ(OC)的(51.77±6.97)%和68.48%;河北郊区的ρ(SOC)分别为(3.28±0.69),4.17μg/m3,分别占ρ(OC)的(62.42±9.62)%和68.32%。此外,夏季北京城区与河北郊区均存在较为严重的二次污染;北京城区含碳组分主要污染源是混合机动车排放、道路扬尘及燃烧源;而工业燃煤排放、机动车尾气及扬尘是河北郊区含碳组分的主要污染源。后向轨迹分析发现,夏季气团轨迹主要来自东南、西南及偏南方向,且对北京城区与河北郊区2个区域PM2.5中碳组分的影响较大。 相似文献
4.
为探究武汉市PM2.5中碳质组分特征及来源,该研究于2018年夏季和2019年冬季在武汉市设点采集了PM2.5样品,分析了PM2.5及其碳质组分(OC、EC和SOC)的浓度水平及季节变化特征,并运用同位素贝叶斯模型对碳质组分进行了来源解析。结果表明,PM2.5在夏季和冬季的平均浓度分别为43.702和89.897μg/m3,均超过《环境空气质量标准》(GB 3095-2012)二级标准限值(35μg/m3)。OC、EC和SOC的夏季浓度为5.628、2.811和1.574μg/m3,冬季浓度为7.928、4.232和3.378μg/m3。冬季OC、EC的绝对浓度虽增大,但在PM2.5中的占比却略有下降,说明冬季PM2.5浓度的上升更多归结于无机组分的增加。武汉市夏季PM2.5中碳组分各污染源贡献率依次为柴油车(50.14%)>C3植物燃烧(3... 相似文献
5.
为探索北京城区大气细颗粒物( PM2. 5) 及其各组分的浓度特征,于 2019 年全年在车公庄地区开展了 PM2. 5及水溶性离子、碳质组分及金属元素的连续在线监测. 结果表明,2019 年北京城区 ρ( PM2. 5) 平均值为 46. 7 μg·m- 3,化学组分中 ρ[有机物( OM) ]、ρ( NO3-) 、ρ( SO42-) 、ρ( NH4+) 、ρ( EC) 、ρ( Cl-) 、ρ( 微量元素) 和 ρ( 地壳物质) 分别为 9. 1、11. 1、5. 7、5. 4、1. 4、0. 9、1. 6 和 7. 3 μg·m- 3,SNA ( SO42-、NO3-和 NH4+) 合计占到了... 相似文献
6.
为研究山西省太原、阳泉、长治和晋城冬季PM2.5中碳质组分的污染特征和来源,于2017-11-15—12-31同步采集了冬季PM2.5样品,采用热/光分析法分析了样品中有机碳(OC)和元素碳(EC)组分含量,使用最小相关系数法估算了二次有机碳(SOC)浓度,并利用相关分析及正定矩阵因子分析法(PMF)研究了各城市PM2.5中碳质组分的来源。结果表明:采样期间各城市OC、EC的平均浓度分别为(13.5±5.7),(8.0±4.4)μg/m3,均呈阳泉((17.3±4.5),(13.6±3.0)μg/m3)>太原((16.5±7.0),(7.8±4.2)μg/m3)>长治((12.8±4.0),(7.7±2.8)μg/m3)>晋城((8.3±2.9),(2.9±1.3)μg/m3)的空间分布特点。各城市OC、EC与气态污染物SO2、NO2和CO均显著相关,表明燃煤源和机动车尾气对碳质组分的影响较大。OC和SOC与相对湿度均呈显著正相关,各城市SOC在OC的占比排序为太原(48%)>长治(45%)>晋城(36%)>阳泉(34%),与相对湿度一致,说明各城市冬季SOC的形成可能主要来自液相反应。PMF解析结果显示:各城市冬季PM2.5中碳质组分主要来源于燃煤源(24.2%~30.4%)、汽油车尾气(21.0%~30.9%)、柴油车尾气(16.1%~24.3%)和扬尘源(17.2%~20.5%),其中燃煤源对长治冬季PM2.5中碳质组分的贡献(30.4%)高于其他3个城市,汽油车尾气对太原的贡献(30.9%)高于其他城市,而柴油车尾气(24.3%)和扬尘(20.5%)对阳泉的贡献均高于其他城市。 相似文献
7.
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源. 相似文献
8.
为研究杭州市PM2.5中碳组分特征,于2013年12月-2014年2月在7个常规点位和2个对照点同步采集PM2.5样品,分析其污染特征及来源.结果表明:杭州市冬季有机碳(OC)、元素碳(EC)、二次有机碳(SOC)的平均质量浓度分别为(23.7±7.5)(5.0±2.4)和(9.2±4.5)μg/m3,OC/EC[ρ(OC)/ρ(EC)]和SOC/OC[ρ(SOC)/ρ(OC)]的平均值分别为5.3±1.9和0.4±0.2.对照点ρ(OC)、ρ(EC)、ρ(SOC)和OC/EC、SOC/OC分别为常规点位的0.8、0.6、1.2、1.2和1.3倍.采样期间,常规点位和对照点ρ(OC)和ρ(EC)的日均值具有相同的时间变化趋势.对照点ρ(OC)和ρ(EC)的相关性(0.49)低于常规点位(0.61),对照点PM2.5中OC和EC的来源差异性更明显.8个碳组分的丰度分析表明,常规点位和对照点PM2.5中碳组分的来源基本一致,主要来源于道路尘、燃煤、机动车和生物质燃烧.绝对主因子分析法源解析结果表明,杭州市冬季PM2.5中总碳(TC)的主要来源中,燃煤/汽油车排放/道路尘、柴油车排放和生物质燃烧的分担率为79.1%、13.1%和3.5%. 相似文献
9.
为研究郴州市PM2.5中碳组分的污染特征及来源,于2016年7月-2017年4月分4个季度典型时段采集郴州市环境大气中的PM2.5,测定了样品中OC(有机碳)和EC(元素碳)的质量浓度,对碳气溶胶污染水平、时空分布、SOC(二次有机碳)以及OC和EC相关性等特征进行了分析,并分析了碳组分的来源.结果表明:郴州市ρ(PM2.5)年均值为(40.2±19.0)μg/m3,ρ(OC)、ρ(EC)占比分别为15.7%和7.2%;ρ(OC)与ρ(EC)相关性分析显示二者来源较为一致,但春季、夏季差异相对较大;ρ(SOC)全年估算值为1.84 μg/m3,占ρ(OC)的29.11%,夏季较高的温度和较低的相对湿度导致夏季ρ(SOC)的估算偏低.结合碳组分丰度分析、PCA(主成分分析)和PMF(正矩阵因子分解分析)结果发现,燃煤/道路尘、机动车排放和生物质燃烧对PM2.5中TC(总碳)的影响最为明显,贡献率分别为49.25%~56.71%、19.79%~25.36%和9.35%~13.69%.反向轨迹聚类结果显示,广东珠三角区域的汽油车排放、道路尘和生物质燃烧对郴州市PM2.5中碳组分有较大的影响,而燃煤和柴油车的贡献主要来源于本地.研究显示,郴州市PM2.5中碳组分污染较为严重,应重点加强本地燃煤和柴油车的控制. 相似文献
10.
为更好地了解碳质组分的特点和来源,在常州市采集了夏季(7~8月)和秋季(10~11月)60个细颗粒物(PM_(2.5))样品.采样期间,夏季PM_(2.5)、OC、EC平均浓度分别为73.0、14.3和3.3μg·m~(-3),秋季为84.2、13.2和3.5μg·m~(-3).总碳质组分(OC+EC)占PM_(2.5)总质量的24.3%(夏季)和20.7%(秋季).采用IMPROVE-A热/光反射法测定的碳质8组分结果表明,OC2、OC3、OC4和EC1相关性好(r0.92),EC2和EC3相关性较好(r0.65),说明可能的相似来源.OC与EC相关性中等,表明碳质组分来源复杂.秋季WSOC/OC(60.9%)略高于夏季(57.4%),而夏季SOC/OC(52.5%)略高于秋季(49.0%).夏季和秋季SOC/OC都低于WSOC/OC,说明部分水溶性有机碳是一次源.WSOC和SOC相关性强,进一步验证了大部分SOC具有水溶性.碳质组分之间的关系及主成分分析表明,采样期间燃煤和机动车尾气排放是碳质组分的两个主要来源.后向轨迹分析表明,采样点PM_(2.5)和碳质组分主要受当地排放源和短距离传输的影响,长距离传输贡献较小. 相似文献
11.
本研究于2015年10~11月在南京北郊分昼夜采集PM_(2.5)样品,采用热光透射法(TOT)和离子色谱法对样品中的有机碳(OC)/元素碳(EC)和左旋葡聚糖(levoglucosan)的质量浓度特征进行分析.观测期间OC和EC的平均浓度分别为(11.3±4.9)μg·m-3和(1.1±0.9)μg·m-3,总碳TC占PM_(2.5)的质量分数为22.9%,OC/EC的平均值为7.4,SOC占OC的质量分数为51.9%.PM_(2.5)、OC、EC和SOC质量浓度都体现出夜晚白天的特征,白天OC和EC的相关性好于夜晚(相关性系数分别为0.86和0.7).通过分析PM_(2.5)、左旋葡聚糖和SOC质量浓度以及后向轨迹和火点数据可知南京北郊在13~16号受到来自河北等地生物质燃烧远距离输送的影响.采样期间K+和左旋葡聚糖与OC、EC和SOC的相关性显著(相关性系数分别为0.78、0.79和0.65),经受体示踪物方法估算采样期间生物质燃烧对OC的贡献为21.9%. 相似文献
12.
石家庄市采暖季PM2.5碳组分昼夜污染特征及来源分析 总被引:1,自引:0,他引:1
为探究2017年石家庄市采暖季昼夜PM2.5中碳组分的污染及来源特征,选取2017年11月30日-2018年1月22日时间段分别采集石家庄白天(8:00-20:00)、夜晚(20:00-翌日8:00)的PM2.5样品,分析PM2.5组分中OC和EC昼夜间的浓度变化特征、来源特性,SOC的估算及影响因素,并对石家庄市碳质气溶胶进行源解析和区域传输分析.结果表明,①采样期间白天PM2.5、OC和EC的平均质量浓度分别为(110.6±71.6)、(39.9±20.4)和(9.3±3.6)μg·m-3,夜间平均质量浓度分别为(128.5±75.3)、(64.7±36.5)和(13.6±6.0)μg·m-3,PM2.5、OC和EC质量浓度均呈现出夜间质量浓度高于白天的特征.②燃煤和机动车尾气排放在增加了一次有机碳(POC)和元素碳(EC)的本底质量浓度的同时,产生的CO、NO2、SO2等气体污染物又促进了光化学反应,两者协同作用下促进了SOC质量浓度的生成和积累.根据估算,SOC、SOC/OC值在夜间高于白天,白天较强的太阳辐射和光化学活性是SOC转化的主导因素,夜间气态有机前体物浓度是SOC转化的主导因素.③采样期间昼夜间OC、EC的相关性较好,其来源具有较好的同源性.大气PM2.5碳质气溶胶主要来自燃煤、汽油车和柴油车尾气排放混合源,夜间柴油车污染源对碳质气溶胶的贡献率较白天更为明显.④后向轨迹结果表明,石家庄市严重污染期间颗粒污染物浓度变化主要受到低空东北方向气团的影响,PM2.5以及OC、EC质量浓度的变化和周边地区的污染物输送有关. 相似文献
13.
采集并分析了武汉市机动车尾气源PM2.5样品,并于2019年10月18~27日采集了武汉市不同路边微环境(市区路边、环线路边、环境背景点)PM2.5样品并分析其化学组分特征,利用化学质量平衡模型(CMB)解析评估了机动车尾气对城市不同路边微环境PM2.5的贡献.结果表明,机动车尾气成分谱以OC和EC为主,汽油车OC质量分数约为柴油车的1.14倍,柴油车EC质量分数是汽油车的1.08倍.路边碳组分主要来源于机动车尾气,其中OC浓度在市区路边最高,EC浓度在环线路边最高;市区路边NO3-和NH4+浓度较高,与二次转化有关;环线路边Fe、Si、Al质量浓度高于市区路边.CMB来源解析结果显示,机动车尾气源是环线路边、市区路边微环境的主要来源,分担率为35.20%和38.89%,是环境背景点的2倍左右.不同路边微环境污染源贡献差异明显,与环线路边相比,市区路边机动车尾气源与二次来源均相对较高,而扬尘源贡献低于环线路边. 相似文献
14.
碳质气溶胶作为大气气溶胶的重要组成部分,对大气环境质量、人类健康及全球气候变化有着重要的影响.为探究贵阳市花溪城区大气细颗粒物(PM2.5)中碳质气溶胶的变化特征及来源,于2020年不同季节开展大气PM2.5原位观测研究,利用热/光学碳分析仪(DRI Model 2015)测定大气PM2.5的碳质组分.结果表明,观测期间大气ρ(PM2.5)、ρ[总碳质气溶胶(TCA)]、ρ[有机碳(OC)]、ρ[二次有机碳(SOC)]和ρ[元素碳(EC)]的平均值分别为:(39.7±22.3)、(14.1±7.2)、(7.6±3.9)、(4.4±2.6)和(2.0±1.0)μg·m-3,OC/EC的平均值为(3.9±0.8).ρ(PM2.5)、ρ(TCA)、ρ(OC)、ρ(SOC)和ρ(EC)呈现冬季最高[(52.6±28.6)、(17.0±9.6)、(9.1±5.2)、(6.1±3.9)和(2.4±1.2)μg·m-3],夏季最低[(25.1±7.1)、(11.6±3.6)、(6.3±1.9)、(3.7±1.2)和(1.6±0.6)μg·m-3]的季节变化特征.OC/EC季节变化呈现:夏季(4.2±0.8)>冬季(3.8±0.9)>秋季(3.8±0.5)>春季(3.7±0.9),表明花溪城区各季节均存在SOC生成.SOC与OC呈现显著相关(R2=0.9),且随着大气氧化性增强,SOC浓度呈增加趋势.OC与EC各季节均呈现较好相关性,其中秋季最高(R2=0.9),其他3个季节偏低(R2为0.74~0.75),表明二者具有共同来源.通过OC/EC值范围初步判断碳质气溶胶来源于机动车尾气排放、燃煤排放和生物质燃烧排放.为了进一步定量解析主要排放源对碳质气溶胶的贡献,利用PMF模型对碳质气溶胶来源解析,结果表明贵阳市花溪城区碳质气溶胶主要来源为燃煤源(29.3%)、机动车排放源(21.5%)和生物质燃烧源(49.2%). 相似文献
15.
于2016年7月和2017年1月采集盘锦市3个点位的PM2.5样品,研究盘锦市夏冬季节PM2.5中碳组分的特征与来源.结果表明:盘锦市夏季PM2.5、有机碳(OC)和元素碳(EC)日均浓度分别为(46.14±12.70),(8.58±2.82)和(2.89±1.54)μg/m3;冬季分别为(91.01±43.51),(24.50±15.51)和(7.31±5.00)μg/m3.夏季开发区和第二中学2个采样点的OC与EC之间不具有线性相关性;冬季3个采样点OC、EC高度相关.采用最小相关系数法(MRS)估算SOC浓度,得到夏季SOC的浓度为4.65μg/m3,占OC总量的54.19%;冬季SOC浓度为8.42μg/m3,占OC总量的34.36%.通过比值分析和主成分分析得出盘锦市夏季PM2.5中碳组分主要来源为汽油车尾气和燃煤排放;冬季PM2.5中碳组分主要来源为机动车尾气、燃煤排放和生物质燃烧. 相似文献
16.
17.
为研究邯郸市PM2.5中碳组分的污染特征及其来源,于2017年4~12月采集PM2.5样品,用热光反射法(TOR)分析PM2.5中有机碳(OC)和元素碳(EC)的质量浓度.结果表明:邯郸市PM2.5和总碳气溶胶(TCA)质量浓度的年均值分别为(88.87±58.89)μg/m3和(31.45±23.35)μg/m3,PM2.5质量浓度超标率为50%,TCA/PM2.5比率的年均值为(38.23%±14.61%),表明邯郸市碳组分污染严重.冬季PM2.5中TCA质量浓度均值为(68.06±23.77)μg/m3,TCA/PM2.5比率的均值为(46.86%±10.07%),OC(37.09±13.05)μg/m3和EC(8.72±3.78)μg/m3浓度明显高于其它季节,表明冬季碳组分污染较为严重.各季节OC/EC比值均大于2,表明邯郸市全年均受二次有机碳(SOC)的污染;OC、EC及SOC与SO2、NO2呈显著正相关,与O3呈显著负相关,尤其是与NO2相关关系最强,说明邯郸市碳质气溶胶可能受到机动车尾气排放的影响.对8种碳组分进行主成分分析,发现道路扬尘、燃煤排放和机动车尾气是邯郸市PM2.5中OC和EC的主要贡献源. 相似文献
18.
太原市大气PM2.5中碳质组成及变化特征 总被引:1,自引:4,他引:1
采用DRI Model 2001A热/光碳分析仪测定了2009年冬季和2010年春季太原市区大气细粒子(PM2.5)中有机碳(OC)和元素碳(EC)的昼夜变化特征,分析了含碳物质的变化特征,并探讨了其来源.结果表明,PM2.5、OC、EC平均浓度水平和OC/EC平均值均呈现出冬季[(289.2±104.8)μg·m-3、(65.2±22.1)μg·m-3、(23.5±8.2)μg·m-3和2.8±0.3]高于春季[(248.6±68.6)μg·m-3、(29.7±6.2)μg·m-3、(20.2±5.4)μg·m-3和1.5±0.3],冬季夜晚[(309.3±150.0)μg·m-3、(74.6±19.5)μg·m-3、(24.3±6.6)μg·m-3和3.1±0.3]高于白天[(234.9±122.1)μg·m-3、(54.9±28.2)μg·m-3、(22.6±10.8)μg·m-3和2.5±0.5],春季白天[(292.5±120.8)μg·m-3、(32.7±10.5)μg·m-3、(22.7±10.1)μg·m-3和1.6±0.5]高于夜晚[(212.3±36.7)μg·m-3、(29.6±6.6)μg·m-3、(20.7±6.4)μg·m-3和1.5±0.2]的污染特征.这是因为冬季处于采暖期,特别是夜晚,煤和生物质燃烧量增加导致碳质颗粒物排放量增加以及大气温度低且稳定不利于污染物扩散;高的OC/EC是OC排放量增加所致而非二次有机碳(SOC)的贡献,因为气温低且太阳辐射弱不利于SOC的生成.春季白天PM2.5、OC和EC浓度水平高于夜晚可能是白天风速比夜晚大且相对湿度比夜晚低而更有利于城市扬尘形成所致,OC/EC高可能是白天温度较高且太阳辐射较强有利于SOC的生成.与国内其他城市相比,太原PM2.5、OC和EC均处于较高的浓度水平,表明太原碳质气溶胶污染严重,可能对城市灰霾形成有重要贡献. 相似文献
19.
为了探究成都平原碳质气溶胶污染特征及来源,于德阳、成都和眉山三地采集了1 a的PM2.5样品,利用光热透射法测量其有机碳(OC)和元素碳(EC). 3个点年均碳质气溶胶的质量浓度(μg·m-3)分别为眉山(OC:15. 8±9. 6,EC:6. 6±5. 3)>成都(OC:13. 0±7. 5,EC:4. 7±3. 6)>德阳(OC:9. 6±6. 1,EC:3. 4±2. 6),对应的总碳质气溶胶(TCA)在PM2.5中的占比分别为36%、34%和30%.由EC示踪法估算获得二次有机碳(SOC)在OC中的占比分别为眉山38%、成都46%和德阳47%. OC和EC质量浓度季节变化显著,呈现出秋冬季高夏季低的特征,在2013年10月12~13日、12月2~7日和2014年1月中下旬出现峰值,同期气溶胶中K+质量浓度激增,说明这些污染过程中生物质燃烧有重要贡献. PMF模型对碳质气溶胶来源解析结果表明,该地区总碳(TC)的主要来源为生物质燃烧源(46%~56%)、二次有机气溶胶源(26%~38%)、机动车排放源(... 相似文献
20.
兰州春夏季PM10碳组分昼夜变化特征与来源分析 总被引:1,自引:2,他引:1
为探讨兰州市春夏季大气可吸入颗粒物(PM_(10))中碳气溶胶的昼夜变化特征及来源,从2015年4月1日至8月30日分白天(08:00~20:00)和夜间(20:00~次日08:00)对兰州市区PM_(10)样品进行采集,并分析了其中的有机碳(OC)和元素碳(EC)的昼夜浓度.结果表明,采样期间白天PM_(10)、OC和EC的平均浓度分别为(136.0±84.3)、(12.4±3.2)和(2.3±0.7)μg·m-3.夜间,PM_(10)和OC、EC的平均浓度分别为(196.0±109.2)、(16.0±5.3)和(5.0±2.1)μg·m-3.PM_(10)、OC和EC浓度均呈现出夜间高于白天.采样期间白天二次有机碳占有机碳的比值均高于夜间,表明白天受二次有机碳的污染更严重.沙尘日PM_(10)和OC浓度均高于非沙尘日,而EC浓度与非沙尘日接近.沙尘日,二次有机碳和总碳气溶胶的浓度均较高,但对PM_(10)的贡献相对较低.对碳气溶胶8种组分进行主成分分析,结果表明在非沙尘日,白天碳气溶胶主要来源于燃煤、汽油车、柴油车排放和生物质燃烧,夜间主要受到燃煤、扬尘以及柴油车和生物质燃烧的影响. 相似文献