首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
2014年APEC期间北京市空气质量改善分析   总被引:6,自引:5,他引:6  
利用2014年11月1~12日(APEC会议期间)北京市大气污染物、PM2.5组分及气象、遥感监测数据,结合CMB受体模型,综合分析了APEC会议期间北京市空气质量与气象条件变化并初步评估了减排措施对APEC会议期间PM2.5浓度的贡献及影响. 结果表明,APEC会议期间北京市PM2.5、PM10、SO2、NO2的浓度分别为43、62、8和46 μg ·m-3,比近5年平均浓度(PM2.5为2012~2013年平均浓度)降低45%、43%、64%和31%; 空间分布上PM2.5在城区及北部山区改善效果最明显,下降幅度在30%~45%之间,南部地区降幅在25%以下; 不同类别的站点降幅在27.4%~35.5%之间; APEC会议期间PM2.5的主要组分SO42-与同期(2013年11月1~12日)相比下降50%,地壳物质同比下降76%,NO3-同比下降35%; CMB模型源解析结果显示APEC会议期间燃煤锅炉贡献2%左右,扬尘贡献7%左右,机动车贡献30%左右; APEC会议期间北京市及周边地区针对可能发生的污染过程采取的减排保障措施对PM2.5浓度具有明显的削峰降速作用.  相似文献   

2.
APEC期间北京空气质量改善对比分析   总被引:9,自引:4,他引:9  
为了评估APEC期间强化减排措施对北京空气质量的改善效果,利用2014年11月1~15日中国环境监测总站发布的奥体中心监测点空气质量监测数据,分析其空气质量演变特征,并与2013年同期监测数据进行对比研究.结果表明:1PM_(2.5)是当前北京最重要的污染物,APEC期间空气质量以优良为主,期间有3次明显的污染过程,与2013年同期相比较有所好转,显示出强化减排措施对北京空气质量的改善有显著的效果;2与世界卫生组织(WHO)的标准值相比,APEC期间PM_(2.5)有5d在WHO标准值(25μg·m~(-3))以下,而SO_2均小于标准值;3APEC期间,在空气质量为优时PM_(2.5)/PM_(10)小于0.5,且随污染浓度的增加比值逐渐增大,在严重污染情况下PM_(2.5)/PM10达到0.9以上;4与2013年同期相比,强化减排措施对PM_(2.5)的减少有一定的贡献,但与SO_2和CO的减少量相比,颗粒物的减少量又相对较少,NO_2减少量相对最小,实施强化减排措施对污染物减排的排序为SO_2COPMNO_2,说明北京空气污染中的PM_(2.5)的来源、影响和减排的复杂性,有待进一步深入研究.  相似文献   

3.
2015年春节北京市空气质量分析   总被引:9,自引:7,他引:9  
对2015年春节(2月18~24日)期间北京市PM2.5、PM10、SO2、NO2的浓度及PM2.5组分进行了分析,并基于PM2.5/CO比值法定量估算了除夕夜烟花爆竹PM2.5排放量.结果表明,春节期间北京市PM2.5、PM10、SO2、NO2的平均浓度分别为116.85、184.71、22.14、36.27μg·m-3,比2014年同期分别增长52.61%、92.41%、-40.15%、-0.46%;除夕夜01:00PM2.5、PM10、SO2、NO2峰值浓度分别为412.69、541.63、152.73、51.09μg·m-3,比2014年同期峰值浓度分别增长19.02%、14.37%、76.57%、11.35%;污染物峰值浓度空间分布上人口密集地区浓度水平明显较高;具有烟花燃放特征的指示性PM2.5组分ρ(Cl-)、ρ(K+)、ρ(Mg2+)峰值浓度分别是2013~2014年各项离子年均浓度的18.85、66.72、70.10倍;烟花爆竹燃放会在短时间内造成严重的大气污染,除夕夜北京市区烟花爆竹排放PM2.5总量约为2.13×105kg.进一步分析显示春节半月期间污染源排放量大幅降低对北京市空气质量的改善效果明显.  相似文献   

4.
2014年春节期间北京市空气质量分析   总被引:19,自引:5,他引:19  
对2014年1月30日(除夕)13时到1月31日(初一)12时期间北京市官园、怀柔和良乡监测站的CO、SO2、NOx、PM10、PM2.5浓度及PM2.5化学组分和能见度等监测数据进行分析,探讨了污染源减排和烟花爆竹燃放对北京市空气质量的叠加影响.研究发现,烟花爆竹的集中燃放会在短时间内造成严重的大气污染,其中,对PM10、PM2.5和SO2的影响最为显著.官园、怀柔和良乡监测站在1月31日凌晨1时的PM10浓度值分别为377.8、253.2和627.0μg·m-3,分别为1、2月份平均值的2.4、2.0和3.6倍;PM2.5浓度值分别为292.0、184.7和522.4μg·m-3,分别为1、2月份平均值的2.1、1.5和3.2倍.烟花爆竹的燃放对PM2.5化学组分中的K+、SO2-4、Cl-、Mg2+和Na+等影响最大,1月31日凌晨1时这5种离子在PM2.5浓度中占的比例高达92.1%.烟花爆竹的燃放造成1月31日凌晨1时监测中心和良乡的能见度分别降至2422 m和3591 m,是1、2月份能见度均值的22.9%和32.8%.2010—2014年"春节半月"期间官园、怀柔和良乡PM10平均浓度大多低于冬季均值和年均值,2014年"春节半月"这3个监测站的PM2.5浓度相比于冬季均值分别下降了33.3%、20.6%和39.2%,表明污染源减排对空气质量的正影响非常明显.  相似文献   

5.
从天气背景场、气象要素、前体物和PM_(2.5)化学组分、气团运动轨迹以及大气氧化性等方面对北京市夏季两种不同的O_3和PM_(2.5)污染状况进行了分析.结果表明,O_3达到中度污染而PM_(2.5)浓度优良(O_3和PM_(2.5)一高一低)污染状况的天气形势场为:高空为偏西北气流,地面受高压后部控制;而O_3和PM_(2.5)同时达到中度污染(O_3和PM_(2.5)两高)的天气形势场为:高空为偏西气流,地面受低压控制.与O_3和PM_(2.5)一高一低污染状况相比,O_3和PM_(2.5)两高时的气象要素特征为:偏南风更为明显和相对湿度更高.O_3和PM_(2.5)两高时污染物浓度演变特征为,O_3和PM_(2.5)的起始浓度较高,PM_(2.5)日变化特征更为明显,而O_3平均浓度却低于O_3和PM_(2.5)一高一低的污染状况.前体物、大气氧化性以及PM_(2.5)化学组分分析的结果表明,较高的起始浓度在不利气象条件下的积累和吸湿增长以及当天较大偏南风造成的区域传输可能是造成O_3和PM_(2.5)两高污染状况中PM_(2.5)浓度达到四级中度污染的主要原因.  相似文献   

6.
2014年10月至11月间,在北京城区开展PM_(2.5)监测并对其中的水溶性离子进行离线及在线分析.其中NO_3~-、SO_4~(2-)和NH_4~+在不同观测阶段均是PM_(2.5)中的主要离子,APEC期间三者总浓度为(26.8±22.5)μg·m~(-3),占PM2.5质量浓度的(41.7±8.5)%,占所测水溶性离子组分的(84.7±5.0)%;APEC期间NO-3浓度水平较高,对PM_(2.5)贡献最大.对APEC期间水溶性离子的累积趋势研究发现,NO_3~-、SO_4~(2-)、NH_4~+和Cl~-均经历了3个不同的累积过程,除气象条件外,本地源排放及区域污染引起的累积效应仍不可忽视.对颗粒物酸性特征研究发现,不同观测期间,颗粒物中主要水溶性离子浓度虽有不同,但北京秋末冬初颗粒物无明显酸化特征.  相似文献   

7.
为分析北京市APEC期间强化减排措施对大气细颗粒物中类腐殖酸(humic-like substances,HULIS)浓度及污染特征的影响.对APEC前后样品进行了碳质组分(OC/EC)、水溶性有机碳(water-soluble organic carbon,WSOC)、HULIS和水溶性离子分析,研究发现APEC采样期间大气颗粒物中HULIS的浓度范围为1~15μg·m~(-3).HULIS浓度在会议减排前、中和后期分别为7.99、5.83和7.06μg·m~(-3).会议减排对降低HULIS浓度起到了一定作用.在会议期间HULIS的浓度下降程度明显快于EC与WSOC.会议之后HULIS的浓度上升程度明显慢于OC、EC、WSOC和PM_(2.5);HULIS占PM_(2.5)的值在采样期间变化不大,在采样期间、会议减排前、中和后期分别为13.60%、13.59%、14.02%和12.22%.HULIS-C/OC的值和HULIS-C/WSOC的值依次为28.95%、35.51%、28.37%、19.93%和52.75%、59.58%、51.54%、45.39%.HULIS与湿度呈显著正相关,与风速呈显著负相关;生物质燃烧和二次转化可能是北京大气颗粒物中HULIS重要来源.  相似文献   

8.
2014年APEC期间北京市PM10和PM2.5氧化性损伤能力研究   总被引:1,自引:0,他引:1  
为评估APEC会议期间联防联控措施对北京市大气可吸入颗粒物毒性的影响,采集2014年APEC会议前后3个月北京市大气PM10和PM2.5样品,应用质粒DNA损伤评价法来研究其氧化性损伤能力. 结果表明,APEC会议期间PM10对DNA的损伤率高于PM2.5,颗粒物对 DNA损伤率随剂量的增加而增加. 本研究用TD30值来指示颗粒物氧化性损伤能力,TD30为引起30%的DNA损伤率所需要的颗粒物剂量(单位为 μg·mL-1),TD30值越低,颗粒物氧化性损伤能力越强,APEC会议前后样品的TD30值表现为 APEC期间(11月)>APEC前(10月)>APEC后(12月),说明氧化能力APEC后 >APEC前 >APEC期间. 用PM10质量浓度乘上其在250 μg·mL-1 剂量下的DNA损伤率得到颗粒物暴露毒性指数TI(toxic index),与往年具有代表性月份样品的数据对比,TI大小顺序为2004年 >2014年 >2008年,说明大气中颗粒物暴露毒性随着政策控制力度的加大而降低.  相似文献   

9.
利用2011年5月11—12日辽宁沙尘天气过程的相关资料,分析了沙尘天气对不同粒径颗粒物及空气质量的影响及此次沙尘过程的天气成因.结果表明:沙尘天气发生前后可吸入颗粒物PM10、PM2.5和PM1的浓度变化很大,沈阳、鞍山、本溪和丹东4城市PM10、PM2.5的小时浓度最大值都增大了1.5~20倍;粗粒子PM(2.5~10)的数量浓度分别增加了30~41倍,质量浓度分别增加了27~30倍;细粒子PM(1~2.5)的质量浓度分别增加了30~35倍,数量浓度分别增加了15~30倍;微粒子的数量浓度和质量浓度各城市表现不同,沈阳微粒子的数量浓度和质量浓度最大值增大了3倍和5倍,而鞍山PM1的数量浓度和质量浓度分别减少了50%和10%.受蒙古气旋的影响内蒙古地区产生大风降温天气,大风将内蒙古地区的沙尘带到高空并随西风带向东移动进入辽宁,由于辽宁地区风速比较小,造成了辽宁大部分地区的浮尘天气,并对辽宁各地空气质量造成了严重影响,除丹东外辽宁其他13个城市空气质量都达到了轻微污染到重度污染的级别,铁岭、阜新、沈阳和抚顺的污染指数分别超过了300,达到了重度污染的级别.  相似文献   

10.
2015年北京市两次红色预警期间PM2.5浓度特征   总被引:2,自引:1,他引:2  
利用北京市及周边地区大气污染物监测数据,综合分析了2015年北京市两次空气重污染红色预警期间PM2.5浓度变化特征并初步评估了减排措施对PM2.5浓度的影响.结果表明:第1次红色预警期间,北京市PM2.5平均最高小时浓度出现在12月9日19:00,为282μg·m-3,单站最高小时值出现在京东南市界永乐店站,浓度达496μg·m-3.第2次红色预警期间,PM2.5全市平均最高小时浓度出现在12月22日20:00,为421μg·m-3;单站最高小时值出现在京西南市界琉璃河站,浓度达831μg·m-3.两次红色预警累积持续时间均呈现出南部站 > 城区站 > 北部站的特征,且第2次红色预警期间PM2.5浓度南北差异明显大于第1次,PM2.5平均浓度在150μg·m-3以上的面积明显大于第1次,第2次红色预警期间重污染面积可达总面积的93%.两次预警期间气象条件均不利于污染物的扩散,均存在不同程度的二次转化和区域输送现象,极端气象条件是重污染形成的外因,区域污染物排放量大才是导致重污染形成的内因.初步评估结果显示红色预警应急措施实施后,北京市PM2.5环境浓度下降约20%~25%,减排效果显著.  相似文献   

11.
2014—2016年海口市空气质量概况及预报效果检验   总被引:1,自引:0,他引:1  
本文主要基于CUACE模式在海口市的预报产品,结合2014年3月—2017年2月海口市AQI、PM2.5、PM10和O3的实况资料进行预报效果检验.结果表明,①近3年海口市空气质量等级主要以优和良为主,但仍有少部分天数以PM10、PM2.5和O3为首要污染物,分别占所有首要污染物天数的27.6%、29.5%和42.9%,其中O3上升幅度较快.②CUACE模式能较好的模拟出AQI和3类污染物浓度的变化特征,其中PM2.5的预报值与实测值最为接近,而PM10和O3普遍偏低.③日平均浓度的预报效果检验表明,PM2.5的标准误差(RMSE)最小,AQI和PM10次之,O3最大.3个时次预报平均偏差(MB)和归一化偏差(MNB)均为负值,表明CUACE模式预报的污染要素浓度均偏低于实测值.④海口市空气质量为优等级时,TS评分最高;无首要污染物时,首要污染物预报的TS评分最高,但首要污染物为PM2.5、PM10或O3时,TS评分均偏低.  相似文献   

12.
为分析APEC会议前后北京地区PM2.5变化特征,利用中国科学院大学雁栖湖校区超级站在2014年10—12月的连续观测数据,对APEC会议前后北京地区污染物分布及变化特征、气象影响因素和气团传输路径特征进行了分析. 结果表明:APEC会议期间北京地区减排效果显著,ρ(PM2.5)平均值比会前下降了60.5%. 气象条件对污染物扩散起到积极作用,APEC期间平均风速为1.40 m/s,平均相对湿度为31.9 %,近地面气象条件优于APEC会前、会后. 北京地区受到外来污染物输送的影响,在2.00~3.00 m/s的南风下易发生来自南部地区的PM2.5和SO2输送. APEC会议期间北京地区主要受来自西北地区的高速、高海拔气团控制,其出现频率为39.6%,远低于APEC会前 (15.9%)和会后(20.8%),而来自南部地区的低速、低海拔污染气团的出现频率仅为2.1%,扩散条件总体良好. 研究显示,除了减排措施有效削减了污染物排放以外,有利的气象条件也是APEC会议期间北京地区保持良好空气质量的重要因素.   相似文献   

13.
2017年厦门金砖会晤期间采取了大气污染临时管控措施,使AQI小时值和日均值均达到了双优的预期目标.本文根据管控措施实施的前、中、后阶段,厦门及周边城市大气污染物浓度的变化,对气象因素和人为因素的影响分别进行分析.结果发现,气态污染物对临时管控措施的敏感性最强,SO2和NO2的降幅(39.9%和25.6%)明显高于PM2.5和PM10的降幅(5.5%和4.8%),台风外围带来的大风和降水可显著改变大气污染物的周期性变化规律.大气PM2.5组成及SO2/NO2、SO42-/NO3-、OC/EC和WSOC/OC等比值变化显示机动车(尤其是柴油货车)是本地区大气污染物的重要来源.控制变量分析显示,厦门金砖会晤期间气象因素对颗粒物和NO2削减的贡献更大(20.3%),而临时管控措施对SO2的削减效果更明显(23.2%),且有一半以上(51%~64%)的大气污染物来自外来源输送.  相似文献   

14.
利用中国环境监测总站发布的实时大气环境监测资料,选择北京国家奥林匹克体育中心(下称北京奥体中心)为研究对象,分析了2014年全年北京奥体中心空气质量演变特征. 结果表明:①2014年全年北京奥体中心首要污染污染物为PM2.5,其次是NO2,而PM2.5和PM10出现中度污染以上的污染事件主要集中在冬季和春末秋初;②PM2.5、PM10、SO2、NO2、O3和CO等主要污染物的年均质量浓度分别为89.75、141.12、21.83、64.26、48.60和1 210 μg/m3. 其中年均ρ(PM2.5)是GB 3095—2012《环境空气质量标准》二级标准限值(35 μg/m3)的2.6倍,年均ρ(PM10)也是其二级标准限值(70 μg/m3)的2.0倍,年均ρ(SO2)略高于其一级标准限值(20 μg/m3),而年均ρ(NO2)则高于其标准限值(40 μg/m3);③北京奥体中心全年逐月ρ(SO2)/ρ(NO2)都小于1.00,年均值为0.37,反映出北京目前硝酸型污染特征越来越明显;④针对不同污染等级下各类污染物质量浓度的分析结果显示,严重污染时ρ(PM2.5)和ρ(PM10)平均值分别高达324.75和494.98 μg/m3,分别是世界卫生组织(WHO)《空气质量准则》推荐24 h平均浓度准则值的13和10倍,其浓度如此之高会对人体健康造成严重危害;⑤ρ(PM2.5)年均24 h变化趋势表明,ρ(PM2.5)具有明显的日变化特征,出现2个峰值,高峰值出现在午夜时分(23:00—翌日01:00),次高峰值出现在上午(09:00—11:00),最低值出现在下午(15:00—17:00),次低谷值则出现在凌晨(05:00—07:00),说明ρ(PM2.5)除与混合层高度日变化特征密切相关外,还与人们的日常生活有一定联系.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号