首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
北京城区夏季O3化学生成过程   总被引:1,自引:2,他引:1  
选取2007年7月1日—8月31日中的21个晴空日,利用观测资料和光化学箱模式计算了北京城区测点的O3生成速率G(O3)和O3生成效率OPE.结果表明,21个晴空日中G(O3)日最高小时值分布在(18~82)×10-9h-1之间;在O3污染和非污染日G(O3)最高值的平均水平无显著差异,且与Ox浓度之间不存在一致的对应关系,表明O3化学生成过程不能全面解释地面O3浓度的累积,物理传输过程对测点O3实测浓度有显著作用;各个化学过程对G(O3)的贡献率对比结果显示,HO2 在 NO向NO2的转化中贡献最大;OPE值分布在2.8~5.8之间,总体水平为4.1±0.1;OPE值与NOx浓度之间为非线性关系,OPE值随NOx浓度的增加而减少,表明消减测点附近VOCs排放能有效降低O3浓度.  相似文献   

2.
北京近交通主干线地区的臭氧生成效率   总被引:10,自引:1,他引:10  
2004年9月27日至10月4日一冷锋系统途径北京并带来了大风和降水天气,为了解冷锋过境前后北京近交通主干线地区臭氧生成效率的变化,利用此期间北京外场观测资料和箱模式计算了臭氧生成率及生成效率.结果表明,臭氧生成率可由观测结果进行求算,表达式为Q·∑Zi·Ki·[VOCi]/KOh NO2·[NO2].臭氧生成效率(OPE)变化范围为1.5~6.0,均值约为3.0,冷锋系统过境前、后OPE变化不显著.削减近交通主干线地区的VOCs排放量能有效降低该地的臭氧浓度.  相似文献   

3.
北京市郊区夏季臭氧重污染特征及生成效率   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究北京郊区夏季O3(臭氧)重污染过程特征及O3生成的光化学敏感性,基于2016年夏季在北京郊区开展的针对O3及其相关污染物的强化观测试验(7月23日—8月31日,共计40 d),分析了观测期间O3浓度[以φ(O3)计]变化特征、O3重污染过程主控因素与O3敏感性化学特征.结果表明:观测期间φ(O3)超标时有发生,最大小时φ(O3)为151.1×10-9,其中有15 d的φ(O3)最大8 h滑动平均值(O3-max-8h)超过了GB 3095—2012《环境空气质量标准》二级标准限值,占观测天数的37.5%;不同O3重污染过程成因有所不同,城市烟羽传输的污染物对郊区O3重污染过程影响显著(观测期间臭氧重污染过程:过程1,7月27—29日;过程3,8月9—11日;过程4,8月16日;过程5,8月21—24日),区域光化学污染对郊区O3重污染过程也有贡献(观测期间O3重污染过程2:8月4—6日);结合后向气流轨迹进一步辅助说明了不同重污染过程中O3的来源不同.研究还发现,观测区域存在反“周末效应”现象,说明观测区域周末受人为影响较为明显;基于观测数据计算的OPE(O3生成效率)分析了O3光化学敏感性表明,在有OPE值的22 d内NOx控制区和VOCs控制区出现的概率(41%)相等,即观测区域O3对NOx和VOCs均敏感;此外还发现,在O3重污染过程中光化学敏感性会随其反应进程发生改变,由NOx控制区逐渐转变为VOCs控制区.   相似文献   

4.
亚硝基二甲胺(NDMA)是在氯/氯胺消毒中发现的一种新型消毒副产物,具有强烈致癌性,引起人们广泛关注。然而,近年来在水处理中应用日益广泛的臭氧氧化工艺中也发现了NDMA的生成,给臭氧应用提出了挑战且可能对后续消毒工艺造成很大威胁。该文从生成情况、前体物、影响因素、生成机理4个方面介绍臭氧氧化过程中生成副产物NDMA的研究进展。总结了国内外臭氧氧化工艺中NDMA的生成情况;介绍了易与臭氧反应生成NDMA的前体物及其结构特征;归纳了影响臭氧氧化生成NDMA的因素,主要包括臭氧量、pH值、溴离子3个方面;重点评述前体物与臭氧反应生成NDMA路径,主要包括甲醛催化亚硝化、N_2O_4亚硝化和偏二甲肼(UDMH)3条路径;最后展望副产物NDMA在臭氧氧化工艺中生成的研究方向。  相似文献   

5.
东亚春季边界层臭氧的数值模拟研究   总被引:3,自引:2,他引:3  
利用嵌套网格空气质量模式系统(NAQPMS)对2004年4月东亚边界层(距地面.km以下)臭氧进行了数值模拟.并评估了东亚边界层光化学反应的活性.结果表明.东亚春季臭氧呈带状分布,其高值.〔φ(O3)>55×10-9.主要集中在30°N~40°N.受东亚季风气候控制.沿蒙古、中国东北以及日本一线有一强臭氧输送通道.输送通量达3×10-.mol/(m2·s).通过计算边界层O3光化学净生成率可知.光化学影响主要集中在高污染源排放地区.其与水平输送对臭氧影响的分布具有负相关性.说明光化学生成的O3可被输送至下风地区,而不仅限于局地.   相似文献   

6.
上甸子本底站臭氧生成效率的观测研究   总被引:7,自引:2,他引:5  
葛宝珠  徐晓斌  林伟立  王瑛 《环境科学》2010,31(7):1444-1450
2008年3月26日~10月9日在北京上甸子大气本底站开展了O3、NOx、NOy、CO等气体的现场观测和VOCs采样观测.利用观测数据,首次取得该本底站臭氧生成效率(OPE),研究了OPE与NOx和VOCs的关系,探讨了HNO3干沉降对OPE的可能影响及订正方法.结果表明,观测期间逐日OPE值的变化范围为0.2~21.1,平均值为4.9±3.6;晴天的总体OPE值为4.3±1.5;OPE值随NOx浓度的变化基本符合抛物线关系,当NOx14×10-9时,OPE随NOx的增加而增加;当NOx14×10-9时,OPE随NOx的增加而减少;芳香烃和OVOCs与OPE存在密切的正相关关系.HNO3等NOx氧化产物的干沉降对计算的OPE有显著影响,导致计算结果偏高.利用北京市区和上甸子的NOy/CO值可以对观测期间的OPE值进行初步订正,但订正方法尚不够严谨,结果需要进一步验证.未订正的OPE计算值可认为是实际OPE的上限.  相似文献   

7.
结合天气形势,地面观测资料和WRF-CMAQ模式,分析了2017年7月8~15日成都市一次罕见持续O3污染过程的特征及成因,量化了各个物理化学过程对此次污染过程的相对贡献,并通过敏感性实验分析了四川盆地内O3及其前体物的区域传输和本地光化学反应对此次污染过程的影响.结果表明,此次O3持续污染过程主要是因为四川盆地内盛行偏东风,导致盆地东部城市群的O3及其前体物经区域输送到成都及周边地区,加之成都市出现小风、气温升高等气象条件进而形成,属于典型的传输性爆发污染.持续污染形成的主要物理化学机制体现为日间气相化学过程贡献为稳定的正值,加之输送过程贡献出现爆发式升高,进而导致近地面O3小时净增量迅速上升且高达50μg/(m3·h),随之O3浓度迅速响应,产生爆发式增长.此外,敏感性实验结果显示此次成都市O3持续污染的形成受区域输送影响较受本地光化学反应影响更为明显.O3污染爆发前上游地区高浓度O3及其前体物沿流场输送并在成都及周边地区不断积累,导致日间O3浓度不断升高.  相似文献   

8.
为探究广东省春季环境空气臭氧(O3)污染成因,选取2022年4月6—10日的一次典型污染过程,结合后向气流轨迹、潜在源贡献因子算法和权重轨迹分析法,较为全面地分析了本次污染过程的特征及传输对O3的影响.结果表明:本次污染范围涉及全省10个城市,污染前期江门市和中山市O3小时峰值浓度分别高达264μg·m-3和272μg·m-3,后期东莞市每日O3小时峰值均高于260μg·m-3.以清远市为代表性城市的分析表明,污染天日最大8 h平均O3浓度、氮氧化物(NOx)和挥发性有机物(VOCs)浓度平均值较非污染天分别升高10.8%、44.0%和168.0%.O3污染天呈高温、低湿的特点,O3浓度与温度的相关性在污染天显著增强.基于MIR值计算的O3生成潜势结果表明,与非污染天相比,污染天间、对-二甲苯、乙苯、邻二甲苯和甲苯对O  相似文献   

9.
蚌埠市臭氧污染评价及一次持续性污染过程分析   总被引:5,自引:2,他引:3  
利用2015年1月—2018年12月近4年的国控点大气污染物监测数据和同期气象观测数据,分析评价了蚌埠市近地面O_3污染的变化趋势及特征,并结合HYSPLIT后向气流轨迹模式及中尺度天气和预报模式(WRF-Chem)模拟预报结果,探讨了一次持续性O_3污染过程中,其他污染物、气象因素及外来传输对近地面O_3浓度的影响.同时,结合蚌埠市2015—2017年环境统计数据,分析了本地污染物排放对本地生成O_3的影响.结果表明:2015—2018年,蚌埠市近地面O_3-8 h第90百分位数由128μg·m~(-3)增长至177μg·m~(-3),呈逐年上升趋势;O_3-8 h超标率由2.28%增长至18.88%,以O_3为首要污染物的污染天数占全年污染天数的百分比由4.08%增长至50.83%,O_3成为影响蚌埠市环境空气质量的主要污染物之一.O_3污染过程期间,蚌埠市近地面以1~3 m·s~(-1)小风为主,O_3在NNW、E、SE、SSE、S方向超标较为明显.在京津冀及周边区域、长三角的中北部区域出现O_3连片污染的情况下,蚌埠市地面受偏东风、东南风和西北风影响,存在较为明显的外来污染传输过程.2015—2017年,蚌埠市工业企业数量由420家减少至257家,区域废气污染物中氮氧化物、烟(粉)尘和挥发性有机物排放量均大幅减少;机动车净增10.78万辆,机动车源排放在区域污染物排放总量中占比较大,且有逐年增加的趋势.由此可见,区域性的O_3污染及前体物输送是蚌埠市近年来O_3污染持续恶化的最主要原因,而在本地污染物(含前体物)排放量明显减少的情况下,本地机动车源排放量所占比例快速攀升,为本地O_3生成提供了大量前体物.今后,蚌埠市在O_3污染管控工作中应格外关注外源性、事件性的O_3污染及前体物输入,同时还应考虑控制本地机动车规模的快速增长.  相似文献   

10.
应用OBM模型研究广州臭氧的生成过程   总被引:2,自引:1,他引:2  
应用基于观测的模型(OBM)研究了广州及其周边地区2000年夏、秋季臭氧生成过程的相对敏感性.在分析2000年7,11月广州市环境保护研究所及其下风向的花都和新垦地区臭氧及其前体物浓度变化和相互关系基础上,应用OBM模型对上述地点的光化学反应过程进行了初步的模拟分析,以讨论这一地区的光化学反应类型.研究表明:7月广州市环境保护研究所RIR(AHC)>RIR(NO),臭氧生成处于VOC控制,下风向的花都RIR(NO)>RIR(AHC),臭氧生成处于NOx控制;11月广州市环境保护研究所RIR(AHC)>RIR(NO),臭氧生成处于VOC控制,下风向的新垦RIR(NO)>RIR(AHC),臭氧生成处于NOx控制.该模拟结果与该地区的相关空气质量模型研究结果具有可比性.   相似文献   

11.
长江三角洲夏季一次典型臭氧污染过程的模拟   总被引:1,自引:0,他引:1  
张亮  朱彬  高晋徽  康汉青  杨鹏  王红磊  李月娥  邵平 《环境科学》2015,36(11):3981-3988
利用WRF/Chem空气质量模式对长江三角洲夏季一次典型臭氧(O3)污染过程的时空分布特征和物理化学机制进行了数值模拟研究.结果表明,模式能够合理地再现这次长江三角洲夏季典型O3污染过程的时空分布特征和演变规律.2013年8月10~18日,长江三角洲主要受副热带高压影响,晴天、高温和小风的气象条件有利于光化学污染的形成.模拟结果表明,长江三角洲地区气象场、地理位置、区域输送和化学生成都对O3的时空分布有影响.敏感性实验表明,上海O3浓度在海洋性气流影响下较低,但上海排放源对长江三角洲O3浓度时空分布的影响较为显著;南京近地面高浓度O3主要贡献为化学生成(烯烃和芳香烃)和高层O3的垂直输送,杭州和苏州近地面高浓度O3主要来源于物理过程.在O3生成速率最大时(11~13h)对O3前体物减排,对长江三角洲15:00的O3峰值浓度影响较为明显.  相似文献   

12.
2006~2019年珠三角地区臭氧污染趋势   总被引:12,自引:21,他引:12  
研究基于2006~2019年粤港澳珠江三角洲区域空气监测网络数据,利用Mann-Kendall检验法和Sen斜率法等统计方法计算了珠三角不同区域臭氧年际变化情况,并分析了变化的原因.结果表明:①2006~2019年珠三角平均臭氧浓度上升趋势显著(P<0.05),平均增长速率为0.80 μg·(m3·a)-1.2016年之后,臭氧平均增长速率为2.08 μg·(m3·a)-1,臭氧浓度增速加快.②珠三角臭氧浓度变化趋势有明显的空间差异和季节差异.中部地区臭氧年均浓度增加趋势显著,外围区域臭氧增加趋势不显著;臭氧增加趋势主要集中在夏季,其他季节变化趋势不显著.③珠三角臭氧变化趋势是由前体物和气象条件共同造成的,特别与NOx的浓度变化密切相关.2006~2019年珠三角中部区域NO2浓度明显下降,滴定效应减弱导致臭氧浓度增加;边缘地区NO2浓度变化较小,臭氧浓度未发生明显的改变.④随着前体物浓度的变化,珠三角臭氧生成敏感区的特征正在发生改变,VOCs控制区面积不断减少,协同控制区和NOx控制区面积逐渐增加,区域臭氧污染防治需要加强对前体物的协同控制.  相似文献   

13.
春季是长三角地区对流层O3污染的高峰期之一,高浓度的O3暴露会影响冬小麦生长导致减产.利用长三角地区各城市2014年春季逐时ρ(O3)观测数据,研究了长三角地区春季O3污染特征,并结合O3暴露指数(M7指数和AOT40指数)和剂量-响应关系模型,详细评估了长三角地区O3污染对冬小麦产量的影响.结果表明:长三角地区春季ρ(O3)空间上总体呈南低北高的分布,长三角地区北部江苏和上海的ρ(O3)明显高于南部的浙江地区,在浙江北部、江苏和上海等地区,整个春季日最大8 h ρ(O3)平均值超过107 μg/m3,最高值出现在5月,超过128 μg/m3;一半以上的城市ρ(O3)超标[超过GB 3095-2012《环境空气质量标准》中8 h滑动平均ρ(O3)的二级标准限值(160 μg/m3)]日数在10 d以上,其中南京和扬州超标日数最多,分别为27和20 d;相应地,O3暴露指数也呈南低北高的分布,其中苏北地区O3暴露指数最高,导致长三角地区平均冬小麦相对损失达5.7%(M7)~25.5%(AOT40),造成的产量损失为7.85×105 t(M7)~4.49×106 t(AOT40),其中,苏北地区为5.8%(M7)~25.9%(AOT40),造成的产量损失为6.77×105 t(M7)~3.86×106 t(AOT40),占长三角地区冬小麦产量损失的86%以上.研究显示,当前长三角地区O3污染及其对冬小麦产量的影响已相当严重,特别是对苏北地区,而苏北地区是我国重要的冬小麦产地之一,因此,应当科学有效地治理O3污染以缓解粮食安全问题.   相似文献   

14.
随着京津冀区域臭氧(O3)污染问题日渐突出,探究和分析京津冀区域O3变化特征和污染过程形成原因对区域大气污染防治工作具有重要意义.观测结果显示,春夏季京津冀区域较高的O3浓度呈现南高北低的分布,北京、天津和石家庄这3座城市O3高浓度往往伴随着偏南风的影响.基于WRF-Chem模式模拟和过程分析技术对2019年京津冀区域O3变化特征和成因进行了深入分析,典型城市化学过程、垂直混合和输送的日变化有着鲜明的季节变化差异.其中在夏季午后化学过程是各城市O3浓度增加的主要来源;垂直混合导致天津和石家庄O3浓度增加,但使得北京O3浓度减少;天津和石家庄存在净输出,而北京则为净流入.通过对比分析O3污染和清洁过程结果表明,化学过程主导北京和石家庄污染过程午后O3浓度增加,天津则为垂直混合,此外,北京和石家庄存在O3净输入,天津则为净输出;而清洁过程中,垂直混合主...  相似文献   

15.
长江三角洲地区春季臭氧异常高值的数值模拟研究   总被引:3,自引:5,他引:3       下载免费PDF全文
已有的观测与研究表明,长江三角洲地区春季的臭氧浓度为全年最高,且高浓度臭氧出现的频率也最高.采用美国环境保护局(USEPA)的区域大气质量模式(CMAQ)研究长江三角洲地区2000年5月一次臭氧异常高值事件.与地面观测资料的对比分析表明,该模式基本再现了臭氧及其前体物的变化趋势.通过个例分析,从物理和化学两方面解释了2000年5月11日佘山、嘉兴和临安均观测到高浓度臭氧的原因.模拟结果表明,气象场对区域空气污染分布形式起着至关重要的作用,同时也反应了在适当的风场作用下,上海地区的污染源可以对长江三角洲地区的空气质量造成很大影响.   相似文献   

16.
城市化、工业化、机动化的高速推进以及大气活性物质的大量排放,使得长江三角洲地区在夏秋季节面临严峻的以高浓度O3为典型特征的光化学污染问题.然而,O3与其前体物之间的高度非线性反应过程使得其来源识别变得十分复杂,因此针对高浓度O3的控制途径仍不清楚.本文以2013年7月长三角地区发生的一次持续时间长、波及范围广、强度高的高浓度O3污染过程为研究案例,基于CAMx空气质量数值模型中耦合的臭氧来源追踪方法(OSAT),采用物种示踪的方法对长三角3个代表性城市上海、苏州、杭州近地面O3的污染来源开展了模拟研究,探讨了4个源区(上海、浙北、苏南和长距离输送)、7类排放源(工业锅炉和窑炉、生产工艺过程、电厂、生活源、流动源、挥发源和天然源)对上海、苏州和杭州城区地面O3的浓度贡献.研究结果表明:长距离输送以及区域背景产生的O3约在20×10-9~40×10-9(体积分数)之间;加上上海及苏南、浙北地区排放的前体物在长三角城区地区二次生成O3,可使O3上升至40×10-9~100×10-9(体积分数)乃至更高.模拟时段内日间8 h O3浓度的地区贡献分析结果显示,长距离传输对于上海、苏州、杭州的浓度贡献分别为42.79%±10.17%、48.57%±9.97%和60.13%±7.11%;上海城区O3来源中,上海本地污染贡献平均为28.94%±8.49%,浙北地区贡献约19.83%±10.55%;苏州城区O3来源中,苏南地区贡献约26.41%±6.80%;杭州城区O3来源中,浙北地区贡献约29.56%±8.33%.从各受点日最大O3小时浓度贡献来看,长距离传输贡献比例显著下降(35.35%~58.04%),而本地污染贡献上升.区域各类污染源贡献分析结果表明,长三角地区对O3污染贡献最为突出的几类污染源分别是工业锅炉和窑炉(浓度贡献约18.4%~21.11%)、生产工艺过程(19.85%~28.46%)、流动源(21.30%~23.51%)、天然源(13.01%~17.07%)和电厂排放(7.08%~9.75%).研究结果表明,工业燃烧排放、生产工艺过程中产生的VOC排放以及流动源大气污染物排放,是造成长三角区域夏季高浓度O3的主要人为源.  相似文献   

17.
基于2015~2020年西北太平洋热带气旋路径资料、珠三角气象观测资料和臭氧监测数据,分析了西行热带气旋(A型)、东海转向热带气旋(B型)、近海影响热带气旋(C型)和远海热带气旋(D型)这4类热带气旋对珠三角臭氧浓度的影响.结果表明,在A型热带气旋影响下,区域臭氧浓度超标频率变化不大;在B型热带气旋影响下,珠三角臭氧超标频率明显升高;在C型热带气旋影响下,区域臭氧超标频率有较明显的升高,但是升高幅度弱于B型热带气旋;D型热带气旋远离中国大陆,对珠三角臭氧浓度影响很小.当A型或C型热带气旋发生时,珠三角区域臭氧日最大8 h平均浓度(MDA8)平均值的平均增幅在5μg·m-3左右,部分城市臭氧MDA8可能下降;B型热带气旋发生时,区域臭氧MDA8平均增幅为19μg·m-3,各城市臭氧浓度均明显增加,其中珠海、江门两市臭氧MDA8平均增幅较大,增幅超过了20μg·m-3.相对来说,珠三角西部城市臭氧浓度受热带气旋的影响更大.当发生B型热带气旋时,珠三角地区太阳辐射增强、日照变长、云量减少、气温升高和相对湿度降低,同时高空下沉气...  相似文献   

18.
长三角地区吸收性气溶胶时空分布特征   总被引:2,自引:1,他引:2  
利用2008~2017年OMI/Aura OMAERUV L2气溶胶数据集,研究了近10年长三角地区吸收性气溶胶的时空分布特征.结果表明:①在时间分布上,长三角地区气溶胶光学厚度(AOD)与吸收性气溶胶光学厚度(AAOD)的年际变化趋势一致,均为先升后降,于2011年达最高值,分别为0. 702和0. 056.月际变化显示AAOD高值多发生在1、3和6月,11月到次年1月明显增加.②在空间分布上,长三角地区AAOD呈北高南低分布,AOD与AAOD分布相似,AAOD 0. 05的高值区主要集中在安徽北部、江苏北部以及南京、杭州和金华等地区. AAOD与AOD季节空间分布均为春冬高,秋季较低,但二者不同的是,夏季AOD很大,AAOD却很小.长三角地区AAOD和AOD的年均空间分布与黑碳贡献量一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号