共查询到18条相似文献,搜索用时 93 毫秒
1.
为探索北京城区大气细颗粒物( PM2. 5) 及其各组分的浓度特征,于 2019 年全年在车公庄地区开展了 PM2. 5及水溶性离子、碳质组分及金属元素的连续在线监测. 结果表明,2019 年北京城区 ρ( PM2. 5) 平均值为 46. 7 μg·m- 3,化学组分中 ρ[有机物( OM) ]、ρ( NO3-) 、ρ( SO42-) 、ρ( NH4+) 、ρ( EC) 、ρ( Cl-) 、ρ( 微量元素) 和 ρ( 地壳物质) 分别为 9. 1、11. 1、5. 7、5. 4、1. 4、0. 9、1. 6 和 7. 3 μg·m- 3,SNA ( SO42-、NO3-和 NH4+) 合计占到了... 相似文献
2.
北京南部城区PM2.5中碳质组分特征 总被引:2,自引:3,他引:2
为了解《大气污染防治行动计划》实施后北京市大气PM2.5中碳质组分特征,于2017年12月至2018年12月在北京污染较重的南部城区进行了PM2.5连续采样,对其中的有机碳(OC)和元素碳(EC)进行了全面研究.结果表明,北京大气PM2.5、OC和EC浓度变化范围分别为4.2~366.3、 0.9~74.5和0.0~5.5μg·m-3,平均浓度分别为(77.1±52.1)、(11.2±7.8)和(1.2±0.8)μg·m-3,碳质组分(OC和EC)整体占PM2.5的16.1%.OC质量浓度季节特征表现为:冬季[(13.8±8.7)μg·m-3]>春季[(12.7±9.6)μg·m-3]>秋季[(11.8±6.2)μg·m-3]>夏季[(6.5±2.1)μg·m-3],EC四季质量浓度水平均较低,范围为0.8~1.5μg·m-3.二... 相似文献
3.
利用颗粒物同步混合实时监测仪、气溶胶化学组分监测仪(ACSM)、大气多金属元素在线监测仪、黑碳仪等在线仪器于2020年12月27日~2021年1月31日在深圳观测了PM2.5及其化学组分.结果显示,深圳市PM2.5在观测期间平均浓度为(32.2±17.0)μg/m3.其中,有机物在PM2.5中浓度最高,均值为(15.4±9.5)μg/m3,其次是NO3-、SO42-、BC、NH4+和元素,浓度分别为(4.3±3.9),(3.8±2.1),(2.7±1.6),(2.5±1.7)和(1.9±1.2)μg/m3.本研究将ACSM获取的有机质谱信息(m/z 44)作为二次有机气溶胶(SOA)的示踪物纳入PMF(正交矩阵因子分解)模型,成功地识别了SOA.源解析结果显示,SOA对深圳市冬季PM2.5贡献了23.8%... 相似文献
4.
北京城区大气PM2.5主要化学组分构成研究 总被引:1,自引:2,他引:1
2012年8月至2013年7月期间,对北京市城区石景山、车公庄、东四和通州这4个点位开展为期一年的PM2.5化学组分研究,共获得样本220组,使用化学质量重构方法进行组分重构研究.结果表明,通过化学质量重构方法获得的PM2.5质量和实际测定PM2.5质量浓度具有很好的相关性,相关系数为0.95,其中春季、秋季和冬季相关系数均大于0.95以上,夏季稍差(0.77);采样期间4个点位的PM2.5主要组分OM、EC、SO2-4、NO-3、NH+4、Cl-、地壳元素、微量元素的质量浓度分别为31.4、3.8、19.9、21.6、14.4、4.0、15.4、2.9μg·m-3,分别占总组分的25.1%、3.0%、15.9%、17.2%、11.5%、3.2%、12.3%、2.3%,除地壳物质外各组分呈东高西低的趋势;2013年1月11日至14日重污染期间,OM、SO2-4、NO-3、NH+4的浓度是全年平均的1.9、5.0、3.2、4.2倍,SO2-4成为本次污染过程中最主要的组分.采暖期和非采暖期城区PM2.5最大的组分均为OM,采暖期相对非采暖期OM、NH+4、NO-3、SO2-4均有较大增幅,但地壳物质和EC相差不大,两个时期差异最大的组分为具有较强燃煤指示性的Cl-(4.4倍).对于化学质量重构结果的未知组分,其中城区PM2.5中水份约占6.0%,夏季颗粒物的水份最大(6.5%),春季和冬季相当,秋季较少(3.7%). 相似文献
5.
为了解中国极干旱区域和田市城区大气PM2.5的组成特征及污染水平,于2014年1-12月采集和田市城区大气PM2.5样品,并用气相色谱-质谱联用仪(GC-MS)、离子色谱仪(IC)、电感耦合等离子体质谱仪(ICP-MS)及元素分析仪分析其中PAHs(多环芳烃)、金属元素、水溶性无机离子、OC(有机碳)和EC(元素碳)等化学组分.结果表明,采样期间和田市城区大气PM2.5质量浓度年均值为(770.11±568.01)μg/m3,呈夏季最高、冬季最低趋势;金属元素、水溶性无机离子、OC、EC、∑16 PAHs(总多环芳烃)分别占PM2.5质量浓度的15.292%、9.789%、4.246%、0.331%、0.015%.利用PMF(正交矩阵因子分解法)分别对PM2.5中PAHs和金属元素、水溶性无机离子、OC、EC进行来源解析表明,PAHs主要来源为煤和汽油燃烧排放(13.91%)、生物质燃烧(33.98%)、天然气燃烧(52.11%);金属元素、水溶性无机离子、OC、EC的主要来源为土壤尘(56.49%)、油类燃烧(25.49%)、机动车排放(10.09%)、燃煤及生物质燃烧(7.93%).研究显示,采样期间沙尘对和田市城区大气PM2.5组成影响较大,是该地区大气污染来源的主要因素. 相似文献
6.
目前有关中国新疆地区PM2.5化学组分特征及其来源的研究较少,为深入了解新疆典型城市PM2.5的化学组分特征与来源构成,该研究于2016年4个季节代表月份在阜康市5个点位采集PM2.5样品,分析了PM2.5质量浓度及主要化学组分(包括水溶性离子、碳组分和无机元素)。分析结果显示,阜康市PM2.5年均浓度达140.77μg/m3,超标较为严重。各组分浓度由高至低依次是SO42->NH4+>NO3->元素总和>OC>Cl->EC>Na+>K+>F->Ca2+>Mg2+,其中SO42-浓度显著高... 相似文献
7.
采集了阳泉市城区2017年10月15日~2018年1月23日PM2.5样品,分析了优良天和污染天PM2.5及其化学组分特征,并利用富集因子分析法(EF)和正定矩阵因子分析法(PMF)对PM2.5进行来源分析.结果表明,采样期间污染天二次无机离子(SO42-、 NO-3和NH+4)在PM2.5中的比例为23.83%,是优良天的2.43倍,污染天二次无机污染严重,污染天人为源相关的元素Cd、 Sb、 Sn、 Cu、 Pb、 Zn和As富集程度大于优良天;主要的污染源对PM2.5的贡献分别是燃煤29.26%、扬尘23.83%、机动车19.34%、二次源16.01%和工业源11.57%,其中,污染天机动车排放对PM2.5的贡献20.57%,高于优良天时17.82%,而燃煤源的贡献23.04%明显低于优良天时33.75%,静稳天气时机动... 相似文献
8.
为了解沈阳市空气细颗粒物的污染特征及主要来源,于2015年2月、5月、8月和10月在沈阳市采集PM2.5样品,对PM2.5质量浓度及其化学组分(无机元素、含碳组分和水溶性离子)进行测定.结果显示,采样期间沈阳市PM2.5平均质量浓度为69 μg/m3,是《环境空气质量标准》(GB 3095-2012)年均二级标准限值(35 μg/m3)的2.0.水溶性离子在PM2.5中的含量最高,其次为碳组分、无机元素.富集因子结果表明:沈阳市富集因子值最高的元素来自于燃煤、交通污染、工业排放等污染源.正交矩阵因子分析(PMF)结果表明:PM2.5结果中燃煤源、二次源、工业源、扬尘源和交通源的贡献比分别为33.4%、27.2%、16.7%、11.5%、11.2%. 相似文献
9.
于2015年10月~2016年8月在重庆大学A区采集秋冬春夏4个季节PM2.5样品(n=77),分析生物标志物(n-alkanes、UCM、藿烷和甾烷)组分特征,探讨季节变化和对来源的指示.结果表明,重庆沙坪坝区PM2.5中Σn-alkanes (C11~C38)和UCM年均浓度分别为328.69ng/m3和2.52μg/m3,均为冬季最高,夏季最低.28n-alkanes PMF源解析识别出4个因子:化石燃料燃烧(23.45%)、化石燃料残留(29.1%)、生物质燃烧(21.35%)和高等植物蜡排放(26.1%).UCM与可分离烷烃组分比例(U:R)为1.29~3.33.夏季U:R最低,可能是受温度和光照的驱使,微生物和植物的生命活动旺盛所致.藿烷Ts/Tm、C30αβ/C31αβ(22R)和C31αβ(22S)/(22S+22R)的年均值分别为1.15,5.26和0.59,指示以机动车尾气排放为主的高成熟度石油烃输入.甾烷C29αββ/(ααα+αββ)和C29ααα(20S)/(20S+20R)的年均值分别为0.40和0.53,主要指示高成熟度化石燃料残余物输入.PSCF分析表明,Σn-alkanes的潜在源区主要集中在四川东南部和重庆西部及其相接壤附近区域,UCM的潜在源区主要分布在四川东南部. 相似文献
10.
于2016年7月和2017年1月采集盘锦市3个点位的PM2.5样品,研究盘锦市夏冬季节PM2.5中碳组分的特征与来源.结果表明:盘锦市夏季PM2.5、有机碳(OC)和元素碳(EC)日均浓度分别为(46.14±12.70),(8.58±2.82)和(2.89±1.54)μg/m3;冬季分别为(91.01±43.51),(24.50±15.51)和(7.31±5.00)μg/m3.夏季开发区和第二中学2个采样点的OC与EC之间不具有线性相关性;冬季3个采样点OC、EC高度相关.采用最小相关系数法(MRS)估算SOC浓度,得到夏季SOC的浓度为4.65μg/m3,占OC总量的54.19%;冬季SOC浓度为8.42μg/m3,占OC总量的34.36%.通过比值分析和主成分分析得出盘锦市夏季PM2.5中碳组分主要来源为汽油车尾气和燃煤排放;冬季PM2.5中碳组分主要来源为机动车尾气、燃煤排放和生物质燃烧. 相似文献
11.
为了解北京城区大气PM2.5主要化学组成特征,于2012年8月─2013年7月对城区石景山、东四和通州3个采样点及城区对照点定陵和区域传输点榆垡开展为期1 a的PM2.5组分研究,共获得268组样品.结果表明:城区平均质量浓度大于1.0μg/m3的组分有OC、NO3-、SO42-、NH4+、EC、Cl-、Si、Ca、Al、K+,其中ρ(OC)、ρ(NO3-)、ρ(SO42-)、ρ(NH4+)分别为(22.2±17.1)、(21.5±25.9)、(19.8±23.7)、(14.3±16.8)μg/m3,分别占ρ(PM2.5)的17.9%、17.3%、15.9%、11.5%,城区各主要组分的平均质量浓度明显大于对照点;城区各采样点之间主要组分所占比例相差不大,与城区对照点、区域传输点差异明显;春、夏、秋、冬四季城区采样点的主要组分均为OC、NO3-、SO42-、NH4+,这4种组分质量浓度之和分别占各季ρ(PM2.5)的62.5%、54.2%、46.0%、62.7%,其中春季ρ(NO3-)、夏季ρ(SO42-)、秋冬季的ρ(OC)相对较高;北京城区各采样点均受SOC影响较大,OC/EC〔ρ(OC)/ρ(EC)〕的平均值为5.7,城区SNA(二次无机气溶胶)占ρ(PM2.5)的比例(15.0%~53.1%)和NO3-/SO42-〔ρ(NO3-)/ρ(SO42-)〕(0.47~1.36)均随空气质量指数上升而增加,同时观测期间北京城区PM2.5中NO3-/SO42-的平均值为1.14,较往年明显增大,表明目前北京城区的PM2.5排放源逐步由以固定源为主向固定源和移动源并重的方向发展. 相似文献
12.
基于2020年12月16日至2021年1月14日采集的渭南PM2.5样品,分析了PM2.5中碳质组分和无机离子的污染特征,并利用正矩阵因子分解法(PMF)、潜在源贡献因子(PSCF)和浓度权重轨迹(CWT)等方法对其来源与源地进行了解析.结果表明,渭南冬季夜间和白天ρ(PM2.5)、ρ(OC)、ρ(EC)、ρ(TWSIIs)的平均值分别为:119.08、 17.02、 6.20、 34.20μg·m-3和130.66、 18.09、 6.22、 50.65μg·m-3.采样期间水溶性离子浓度表现为:F->NO-3>Ca2+>SO42->Na+>Cl->NH+4>K+>Mg2+ 相似文献
13.
北京大气PM2.5中微量元素的浓度变化特征与来源 总被引:17,自引:7,他引:17
为了解北京大气细粒子中微量元素的污染水平和来源,在车公庄和清华园进行了连续1年、每周1次的PM2.5采样和全样品分析.微量元素浓度的周变化大,尤以冬季为甚,相邻2周最大相差达1.6倍;但除冬季的平均浓度较高之外,其季节变化并不显著.微量元素的富集因子在春季最低,反映了频繁发生的沙尘天气的影响.Se、Br和Pb的浓度比来自于北京A层土壤中的含量要高出约1000~8000倍,表明它们主要来自于人为污染.其中Se的富集度最高,反映了北京细粒子来自于燃煤污染的特征.Pb的年均浓度(0.31μg·m-3)虽然未超过WHO的年均标准,但与洛杉矶和布里斯班相比处于较高的水平;与Br、Se的比较分析表明,燃煤可能是Pb除机动车排放之外的另一个重要来源. 相似文献
14.
2013年1月北京市PM2.5区域来源解析 总被引:9,自引:11,他引:9
2013年1月,北京地区经历了多次严重的灰霾天气,细颗粒物污染已成为北京地区所面临的重要问题.了解和掌握北京细颗粒物的污染来源,是解决细颗粒物污染的重要途径,也是制定防治政策的重要依据.通过建立三维空气质量模型系统,对2013年1月20~24日的污染过程进行模拟,并运用PSAT技术探究北京市细颗粒物污染的区域来源.结果表明,本地源排放是北京市PM2.5的主要来源,平均贡献率为34%;河北和天津的平均贡献率分别为26%和4%;京津冀周边地区及模拟边界外的贡献分别为12%和24%.在重污染日,区域传输对北京市PM2.5的影响显著增强,是北京PM2.5污染的主要来源.PM2.5中的硝酸盐主要来自北京市周边地区的贡献,而硫酸盐和二次有机气溶胶呈现远距离传输的特性,铵盐和其他组分则主要来自北京本地的贡献. 相似文献
15.
北京冬季PM2.5中金属元素浓度特征和来源分析 总被引:4,自引:2,他引:4
为了解北京冬季细颗粒物中金属元素的浓度水平及其来源,于2014年12月至2015年1月使用中流量PM_(2.5)采样器在北京城区开展了为期30 d的连续采样,采用滤膜称重法检测PM_(2.5)浓度,电感耦合等离子体质谱法(ICP-MS)分析PM_(2.5)中16种元素总量,并采用富集因子法和因子分析法分析元素污染特征及其来源.结果表明,观测期间PM_(2.5)中主要金属元素为K、Ca、Fe、Al和Mg,占16种元素总量的90.7%.与白天相比,地壳元素如Mg和Al等在夜间的浓度下降30%以上,而人为源金属元素如Cu和Pb等的浓度则上升40%以上.从优良天到重污染天气,上述16种金属元素的总浓度上升1倍,但其在PM_(2.5)中的比例却逐渐降低,说明金属元素的富集不是PM_(2.5)上升的主要原因.随着污染程度的加剧,Cu、Zn、As、Se、Ag和Cd等主要来自人为源的金属元素浓度上升较快,重度污染天与优良天的浓度比值范围为2.9~5.3;而Al、Mg、Ca、Mn和Fe等地壳元素浓度上升则较缓,重度污染天与优良天的浓度比值范围为1.2~1.8.北京冬季PM_(2.5)中金属元素主要来源于燃煤和生物质燃烧、交通和工业排放以及地面扬尘,贡献率分别为34.2%、25.5%和17.1%. 相似文献
16.
基于2015~2021年的1~3月北京市大气PM2.5浓度与化学组成长期观测数据,分析了2022年北京冬季奥林匹克运动会(冬奥会)和北京冬季残疾人奥林匹克运动会(冬季残奥会)历史同期的PM2.5污染态势、化学组成特征以及潜在源区.2015~2018年的1~3月重污染[日均ρ(PM2.5)>75 μg·m-3]天数以及重污染期间PM2.5平均值下降十分显著,之后这两者未发生明显改变.2018~2021年的1~3月每年平均发生重污染23 d,重污染天ρ(PM2.5)平均值约为120.0 μg·m-3.2015~2021年的1~3月超长重污染过程(连续重污染超过5 d)平均每年发生2~3次,其中2021年发生3次,且持续时间最长达到8 d.历年冬奥会历史同期发生重污染的天数为2~9 d,春节期间烟花爆竹大量燃放可能是该时期重污染发生的重要原因之一;冬季残奥会历史同期重污染天数一般为1~5 d,但2021年受频繁出现的静稳天气影响,重污染天数高达9 d.在同时段重污染期间,PM2.5化学组成均以二次组分为主,例如在PM2.5可测组分中,2020年NO3-质量分数高达46%,较同年清洁天(11%)显著增加;SO42-质量分数为12%~19%,说明当前硫酸盐污染仍不容忽视.北京市1~3月PM2.5主要贡献区域包括内蒙古自治区中西部、河北省、天津市、山西省、陕西省、山东省中西部和河南省北部.研究结果将为北京市冬季空气质量持续改善以及2022年冬奥会与冬季残奥会期间北京市环境空气质量保障提供科学依据. 相似文献
17.
为研究北京城区PM2.5不同组分对大气消光系数的贡献率,于2013年10月—2014年8月使用3台PQ200采样器在北京市环境保护科学研究院采集PM2.5样品并进行质量重建,采用IMPROVE方程计算大气消光系数并分析各组分的贡献率.结果表明:1北京城区ρ(PM2.5)年均值为(90.3±8.1)μg/m3,相比2005年有所下降,颗粒物呈弱碱性,NH4+略有剩余.2PM2.5质量重建后,化学构成为OM〔32.1%,为ρ(OM)占ρ(PM2.5)比例,下同〕、NO3-(13.6%)、SO42-(13.9%)、NH4+(11.1%)、Cl-(3.8%)、其他离子(4.0%)、EC(元素碳,5.0%)、FS(土壤尘,8.9%)、微量元素(1.3%)和未知物质(6.7%);与2005年相比,OM、NO3-、NH4+等二次污染物质量浓度占ρ(PM2.5)比例均显著增加,ρ(水溶性离子)占ρ(PM2.5)的比例随空气污染加重而增加.3北京城区大气消光系数年均值为(504.6±49.3)Mm-1,OM、(NH4)2SO4、NH4NO3、EC和FS的贡献率分别为37.5%、28.3%、25.2%、7.6%和1.4%;冬季由于ρ(PM2.5)高,大气消光系数最高,为(589±124.3)Mm-1,约是春季的2倍;夏季由于相对湿度大,PM2.5吸湿粒径增大,大气消光系数仅次于冬季.OM对大气消光系数贡献率为冬季最高,而(NH4)2SO4的贡献率在冬夏季均大于NH4NO3. 相似文献
18.
为更好地解析北京地区ρ(PM2.5)的长期变化特征及气流轨迹聚类分析结果,对2007年8月—2014年7月在中国环境科学研究院实测的ρ(PM2.5)数据进行了统计分析,分析其年际、季节和月际变化特征;通过计算PM2.5的AQI分指数,分析了污染等级的时间变化特征;结合后向气流轨迹,对ρ(PM2.5)年际、季节变化与气团来源的关系进行了分析.结果表明:北京地区2008—2013年ρ(PM2.5)年均值分别为111.5、95.8、94.8、80.5、75.2、81.3 μg/m3,整体呈逐年下降趋势,但污染水平依然较高;ρ(PM2.5)由高到低的季节次序为秋季、冬季、春季、夏季,平均值分别为111.6、94.8、77.2、70.5 μg/m3,PM2.5重污染时段主要出现在秋冬季节,并且冬季ρ(PM2.5)近年来逐渐呈上升趋势;ρ(PM2.5)月均值呈单峰型变化,11月最高(为125.3 μg/m3),7月最低(为76.4 μg/m3);轨迹聚类分析发现,途经山西省北部和河北省南部的气流轨迹中ρ(PM2.5)较高,而来自北方及西北方向的气团相对较清洁,ρ(PM2.5)较低.北京地区近些年实施的大气污染减排措施对于控制PM2.5污染取得了一定效果,但针对秋冬季节重污染过程的控制力度仍需要加强,同时也要注意区域污染传输对北京地区ρ(PM2.5)的影响. 相似文献