首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 390 毫秒
1.
正该专利涉及一种对氨基二苯胺生产废水短程反硝化积累亚硝态氮的方法。具体方法如下:将对氨基二苯胺生产过程中产生的含甲酸废水与含硝酸根的废水混合,调节废水的碳氮比和pH,添加氮、磷营养盐,经过沉淀、气浮等处理后,通过缺氧短程反硝化反应去除废水中的高浓度有机物,并产生含亚硝态氮的出水,以利于后续的厌氧氨氧化  相似文献   

2.
高氮低碳废水生物脱氮研究进展   总被引:11,自引:0,他引:11  
针对传统生物脱氮工艺在处理高氨氮、低碳源废水时存在的问题,提出了短程硝化一反硝化和厌氧氨氧化两种生物脱氮新技术,初步探讨了影响亚硝酸盐积累和厌氧氨氧化工艺的因素。介绍了半硝化-厌氧氨氧化工艺的原理和特征,为高氨氮、低碳源废水生物脱氮工艺的没计提供 全新的理论和思路。  相似文献   

3.
低浓度氨氮废水的厌氧氨氧化研究   总被引:4,自引:1,他引:3  
张龙  肖文德 《化工环保》2005,25(4):267-270
采用污泥混合接种的方法,利用UASB反应器进行厌氧氨氧化菌混培物的培养与驯化,反应器连续运行了210d。当含氮模拟废水进水NH3-N浓度和NO2^--N浓度分别为3~5mmol/L和4~6mmol/L时,其最大去除率分别达68.0%和95.1%。扫描电镜结果表明,厌氧氨氧化菌混培物以形状不规则的短杆菌为主。  相似文献   

4.
通过间歇曝气的运行方式,对高浓度氨氮低碳废水进行短程硝化-反硝化脱氮过程的研究.在生物驯化过程中考察亚硝酸盐氮的积累,并验证短程硝化即亚硝化的可行性.实验结果表明,短程硝化-反硝化过程满足高氨氮低碳废水的生物脱氮要求,亚硝化率达到98.0%以上.采用16S rRNA基因克隆文库分子生物学分析方法对系统中的硝化菌群进行分析,发现系统中主要存在将氨氧化成亚硝酸根的氨氧化菌(AOB)及亚硝酸盐还原菌.  相似文献   

5.
崔丽  王慧  黄开拓  梁吉艳  王新 《化工环保》2017,37(2):159-165
硫酸盐型厌氧氨氧化(S-ANAMMOX)可将废水中的氮硫元素同时去除,避免了氨氮、硫酸盐分别处理时过程不稳定、去除效率低等不足,且不产生二次污染。但该反应的启动耗时长以及机理不明确影响了其应用。本文在探讨S-ANAMMOX反应机理的基础上,对反应器、污泥源、填料、碳源及运行条件等启动过程影响因素进行了阐述,并对今后的研究做出了展望。指出:应在量化反应产物的基础上深入对反应机理和功能微生物特性的研究;分析反应器、污泥源等启动因素的差异性;促进S-ANAMMOX在实际废水处理中的应用。  相似文献   

6.
采用具有恒定pH功能的SBR接种厌氧氨氧化颗粒污泥,研究了pH对厌氧氨氧化菌脱氮效能的影响。实验结果表明:在进水ρ(氨氮)和ρ(亚硝酸盐氮)分别为58.00 mg/L和79.28 mg/L、TN容积负荷为0.82 kg/(m3·d)、不控制反应pH的条件下,随着反应的进行,pH不断升高,当pH=8.02时,菌种的去除效能最高;在进水ρ(氨氮)和ρ(亚硝酸盐氮)分别为120.00 mg/L和159.33 mg/L、TN容积负荷为1.62 kg/(m3·d)、恒定反应pH为8.00的条件下,反应4.0 h时的容积基质氮去除速率(NRR)达到1.42 kg/(m3·d),氨氮去除率达98.39%,亚硝酸盐氮去除率达99.48%;拟合曲线推导的最适pH的理论值为7.85,反应4.0 h时的NRR理论最大值达1.52 kg/(m3·d)。  相似文献   

7.
厌氧氨氧化-反硝化协同脱氮研究   总被引:4,自引:1,他引:3  
采用厌氧氨氧化(ANAMMOX)工艺的上流式厌氧污泥床(UASB)-生物膜反应器(简称反应器)处理高浓度含氮废水,启动并稳定运行630d后,进行进水浓度负荷实验分析。当进水ρ(NH3-N),ρ(NO2--N),ρ(TN)分别为340.0,448.8,788.8mg/L时,其去除率分别为84.0%,93.0%,85.0%。在反应器中连续加入有机物(葡萄糖),进水ρ(NH3-N)和ρ(NO2--N)分别为240.0,316.8mg/L,进水COD为330.0—380.0mg/L,COD去除率达92.0%。仅用23d,在同一反应器系统中成功实现了ANAMMOX与反硝化协同作用脱氮。葡萄糖的存在对系统去除NH3-N和NO2--N的能力影响不大。  相似文献   

8.
厌氧-好氧法处理聚氯乙烯离心母液废水   总被引:9,自引:1,他引:8  
采用厌氧膨胀颗粒污泥床反应器与内循环式好氧生物膜反应器串联工艺对悬浮聚合法聚氯乙烯离心母液废水进行连续处理实验。在温度为35℃、厌氧反应器水力停留时间为8h、好氧反应器水力停留时间为6h条件下,TOC总去除率达95%以上,厌氧段为50%左右。结果表明:厌氧段还可提高其出水的可生化性;温度对厌氧及整个系统的处理效果影响较大;运行过程中须向离心母液废水中添加氮、磷等营养物质。  相似文献   

9.
研究了微氧条件下两级膨胀颗粒污泥床反应器对焦化废水的处理。实验结果表明:一、二级反应器的氧化还原电位在0~+15mV和+60~+80mV时系统对COD和NH3-N的去除率均为90%,系统出水COD和NH3-N质量浓度分别为100~150m g/L和20m g/L;在运行过程中未添加碱和碳源的条件下,两级反应器出水硝酸盐氮和亚硝酸盐氮的平均质量浓度分别为5m g/L和144m g/L,说明出水亚硝酸盐积累明显。颗粒污泥微氧条件下的累计产甲烷量比厌氧条件下增加了一倍多。  相似文献   

10.
亚硝化厌氧氨氧化生物脱氮技术   总被引:6,自引:0,他引:6  
张龙  肖文德 《化工环保》2004,24(2):103-107
回顾了传统废水生物脱氮技术的一般原理,介绍了废水生物脱氮领域近年出现的新技术——亚硝化和厌氧氨氧化生物脱氮技术的基本原理、工艺特点及研究应用状况,展望了生物脱氮新技术的应用前景并指出了今后的研究方向。  相似文献   

11.
采用反硝化反应器,研究了Cr(Ⅵ)对活性污泥系统反硝化过程的影响。在进水Cr(Ⅵ)投加量2.5 mg/L条件下,活性污泥反硝化过程中COD和硝酸盐氮的去除率受到的影响较小,而在10.0 mg/L条件下受到的影响较大,COD和硝酸盐氮的去除率分别从最初的97.1%和99.0%降至70.6%和24.7%。在停止投加Cr(Ⅵ)后的恢复期内,反硝化系统可以逐渐恢复对COD和硝酸盐氮的去除,亚硝酸盐氮仍会有积累,但随着时间的延长可恢复至初始状态。硝酸盐氮还原为亚硝酸盐氮的过程比亚硝酸盐氮的还原过程更易受到Cr(Ⅵ)的影响。  相似文献   

12.
厌氧氨氧化技术是一种以厌氧氨氧化自养菌脱氮为核心的新型生物脱氮技术,具有良好的应用前景。本文对厌氧氨氧化过程的反应机理、菌种的生长特性及种类分布进行了详细介绍,总结了厌氧氨氧化技术在不同废水脱氮领域的研究及应用情况。指出,种泥缺乏是当前限制厌氧氨氧化技术大规模工业推广的瓶颈,并就厌氧氨氧化技术在应用过程中遇到的问题给出了相应建议。  相似文献   

13.
Influence of aeration rate on nitrogen dynamics during composting   总被引:6,自引:0,他引:6  
The paper aimed to study the influence of aeration rate on nitrogen dynamics during composting of wastewater sludge with wood chips. Wastewater sludge was sampled at a pig slaughterhouse 24h before each composting experiment, and mixtures were made at the same mass ratio. Six composting experiments were performed in a lab reactor (300 L) under forced aeration. Aeration flow was constant throughout the experiment and aeration rates applied ranged between 1.69 and 16.63 L/h/kg DM of mixture. Material temperature and oxygen consumption were monitored continuously. Nitrogen losses in leachates as organic and total ammoniacal nitrogen, nitrite and nitrate, and losses in exhaust gases as ammonia were measured daily. Concentrations of total carbon and nitrogen i.e., organic nitrogen, total ammoniacal nitrogen, and nitrite and nitrate were measured in the initial substrates and in the composted materials. The results showed that organic nitrogen, which was released as NH4+/NH3 by ammonification, was closely correlated to the ratio of carbon removed from the material to TC/N(org) of the initial substrates. The increase of aeration was responsible for the increase in ammonia emissions and for the decrease in nitrogen losses through leaching. At high aeration rates, losses of nitrogen in leachates and as ammonia in exhaust gases accounted for 90-99% of the nitrogen removed from the material. At low aeration rates, those accounted for 47-85% of the nitrogen removed from the material. The highest concentrations of total ammoniacal nitrogen in composts occurred at the lowest aeration rate. Due to the correlation of ammonification with biodegradation and to the measurements of losses in leachates and in exhaust gases, the pool NH4+/NH3 in the composting material was calculated as a function of time. The nitrification rate was found to be proportional to the mean content of NH4+/NH3 in the material, i.e., initial NH4+/NH3 plus NH4+/NH3 released by ammonification minus losses in leachates and in exhaust gases. The aeration rate was shown to be a main parameter affecting nitrogen dynamics during composting since it controlled the ammonification, the ammonia emission and the nitrification processes.  相似文献   

14.
We examined the metabolic response of an estuarine benthic community to additions of three materials being considered for use in manufacture of biodegradable substitutes for plastics. Diver-collected cores containing benthos were dosed with 59 g/m2 of three test materials, cornstarch, a bacterial polyester (PHBV), and ethylene vinyl alcohol (EVOH), or left undisturbed as controls. Fluxes of dissolved nutrients (ammonia, nitrate + nitrite, phosphate, silica) and dissolved inorganic carbon (DIC) were similar in control cores and cores dosed with EVOH during a 1-month test period at 20°C. Fluxes in cores dosed with starch and PHBV differed significantly from controls but not from each other. After 2 weeks of incubation, production of DIC was higher in cores containing starch and PHBV, while efflux of ammonia, nitrate, and nitrite was reduced. After 4 weeks of incubation, production of DIC was similar among all treatments and controls, while efflux of ammonia was high in the starch- and PHBV-containing cores compared to controls and cores with EVOH. Fluxes of silica and phosphate were similar in all cores during the experiment. These results indicate that both starch and PHBV are carbon-rich substrates readily metabolized by the benthic community but that their presence significantly alters normal nutrient exchange patterns. This response is expected because of the high carbon-to-nitrogen ratio of starch and PHBV and indicates that impacts of these two materials would be similar. However, the high biological oxygen demand of such materials and resulting disturbance of normal nutrient regeneration patterns of the benthos (delayed ammonia efflux and potential stimulation of denitrification) must be considered in developing strategies for their disposal.Paper presented at the Biodegradable Materials and Packaging Conference, September 22–23, 1993, Natick, Massachusetts.  相似文献   

15.
崔丽  王慧  黄开拓  许涛  梁吉艳 《化工环保》2017,37(4):415-420
在循环流厌氧反应器中研究了无机条件下采用厌氧颗粒污泥启动硫酸盐型厌氧氨氧化(S-ANAMMOX)的反应特性。结果表明:在1~124 d的运行时间内,从第37天开始出现了NH4+-N和SO_4~(2-)的同步去除,生成NO_2~-,NO_3~-,反应最终产物为N2和单质硫,NH4+-N和SO_4~(2-)的最高去除率分别达到92.47%和59.3%;当进水nN∶nS较高时,能显著提高NH4+-N去除率和总氮去除率;SO_4~(2-)与NH4+发生氧化还原反应产生NO2-和NO3-是pH降低的过程;进水nN∶nS、进水平均NH_4~+-N、SO_4~(2-)质量浓度和HRT均对S-ANAMMOX反应的氮硫转化比有一定影响,表明S-ANAMMOX反应是一个多步反应。  相似文献   

16.
高会杰  孙丹凤 《化工环保》2014,34(4):336-339
采用氨化—硝化—反硝化三段联合生物工艺处理分子筛催化剂生产过程中产生的含有机胺废水。实验结果表明:在氨化过程中,当进水COD稳定为1 200~1 600 mg/L时,出水COD低于300 mg/L,COD去除率稳定在80%左右,当进水ρ(有机氮)为100~160 mg/L时,出水ρ(有机氮)均低于30 mg/L,有机氮去除率大于80%,在整个氨化过程中,出水ρ(氨氮)较进水ρ(氨氮)提高了35~200 mg/L;硝化过程中,当进水ρ(氨氮)小于等于300 mg/L时,出水ρ(氨氮)最终稳定在15 mg/L以内,氨氮去除率大于90%;在反硝化过程中,亚硝酸盐氮去除率基本稳定在98%以上,最终出水COD低于80 mg/L,出水ρ(总氮)低于25 mg/L。  相似文献   

17.
厌氧/好氧生物脱氮-絮凝法处理焦化废水   总被引:13,自引:0,他引:13  
采用厌氧/好氧生物脱氨-絮凝法处理焦化废水,出水中NH_3-N<15mg/L,COD为96-158mg/L。利用甲醇残液及其他有机废水作为外加碳源,可以达到以废治废的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号