首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
为了解长白山大气PM2.5中水溶性离子的季节变化特征及其影响因素,于2005年6月~2008年12月,在长白山北坡海拔763 m处利用大流量滤膜采样器采集PM2.5样品,并用离子色谱分析其中的主要水溶性离子成分含量.结果表明,3种最主要的水溶性离子SO2-4、NH+4和NO-3季节变化趋势明显,SO2-4夏季浓度最高,秋季浓度最低;NO-3冬季浓度最高,夏季浓度最低;NH+4的季节变化趋势主要受到SO2-4和NO-3季节变化趋势的影响.不同方向后向轨迹所对应的总水溶性离子浓度存在明显差异,浓度排序依次是NE相似文献   

2.
用离子色谱法对181份PM2.5有效样品中NO-3、SO42-、NH+4、Cl-和F-等5种水溶性离子进行检测分析。结果表明,西安市PM2.5的年均浓度为(71.04±51.80)μg·m-3,季节变化特征表现为:冬季>春季>秋季>夏季。五种水溶性离子的年均浓度为(28.24±31.79)μg·m-3,季节变化特征表现为:冬季>春季>秋季>夏季。各水溶性离子的年均浓度由大到小依次为:NO-3>SO42->NH+4>Cl->F-。NO-3在冬、春、秋三季...  相似文献   

3.
为探究当前空气质量持续改善背景下重污染地区大气PM2.5和水溶性无机离子(WSⅡs)的污染特征和季节变化,于2019年在太原市采集了四季PM2.5样品.结果表明,2019年太原市PM2.5年均质量浓度为(65.50±30.44)μg·m-3,水溶性离子浓度的季节特征为:冬季(39.81 μg·m-3) > 秋季(33.05 μg·m-3) > 春季(20.50 μg·m-3) > 夏季(19.62 μg·m-3).WSⅡs以二次离子SNA为主,占总离子浓度的76.90%±10.51%,且随着PM2.5污染加重,SNA的比重显著升高.其中,SO42-和NO3-在秋、冬季的浓度最高,这与气态污染物排放增加和二次转化程度的升高(硫氧化率SOR>0.30,氮氧化率NOR>0.10)有关;NH4+、Cl-和K+在冬季的浓度最高,是其他季节的1.2~7.9倍,可能归因于冬季燃煤和生物质燃烧活动的增加;由于春季风速较高,受土壤扬尘的影响,Ca2+和Mg2+的比重在春季显著增加为20.2%.春季和夏季为贫氨状态,而秋、冬季为富氨状态,且硝酸盐颗粒物在高湿度条件下的吸湿增长比硫酸盐更为显著.太原市大气PM2.5中水溶性离子主要来源于二次生成、燃煤、生物质燃烧和土壤扬尘.  相似文献   

4.
2017~2018年北京大气PM2.5中水溶性无机离子特征   总被引:4,自引:7,他引:4  
为探究近年来北京市空气质量持续改善过程中PM2.5及其中水溶性无机离子(WSIIs)特征,于2017~2018年在北京城区进行了连续1 a的PM2.5样品采集,对其中9种主要WSIIs进行了全面分析.结果表明,北京市PM2.5年均浓度为(77.1±52.1)μg ·m-3,最高和最低值分别出现在春季[(102.9±69.1)μg ·m-3]和夏季[(54.7±19.9)μg ·m-3].WSIIs年均浓度为(31.7±30.1)μg ·m-3,对PM2.5贡献比例为41.1%,季节贡献特征为:秋季(45.9%) > 夏季(41.9%) > 春季(39.9%) ≥ 冬季(39.2%).SNA是WSIIs的重要组成,春、夏、秋和冬季在总WSIIs中的占比分别可达86.0%、89.5%、74.6%和73.0%.随温度升高,NO3-和SO42-分别呈现出了先升高后降低以及波动性升高的趋势;而当相对湿度低于90%时,2种离子浓度均随相对湿度增加而升高,反映了光化学和液相过程对2种离子组分的贡献差异.随污染加重,WSIIs整体贡献比例大幅升高,且各类WSIIs演化特征各异,其中,NO3-浓度和贡献均持续升高,而SO42-和各类源自扬尘的离子组分(Mg2+、Ca2+和Na+)贡献降低.观测期间WSIIs主要来源包括二次转化、燃烧源和扬尘源,对燃煤和机动车的管控是其减排的重要途径.后向轨迹分析表明,源自北京市南部和西部的气团对应着较高的PM2.5浓度和WSIIs占比,且二次离子贡献显著;而源自西北和北部的气团对应的PM2.5浓度和WSIIs占比则较低,但Ca2+贡献较高.  相似文献   

5.
对2017年6月—2018年5月北京市延庆区大气PM2.5样本进行采集,分析了PM2.5中9种水溶性无机离子的污染特征,并利用SPSS软件进行来源解析。结果表明:延庆区大气PM2.5中总水溶性无机离子平均浓度为28.0 μg∕m 3,其中,S O 4 2 - 、N O 3 - 和N H 4 + 是最主要的水溶性无机离子,合计占比为82.1%。受天气影响,N O 3 - 和S O 4 2 - 浓度均表现为秋高冬低,N H 4 + 浓度为秋高夏低;受冬季气象条件和施工影响,Ca 2+、Mg 2+、Na +浓度冬季最高。根据电荷平衡分析,春季PM2.5中阴、阳离子基本达到平衡状态,夏、秋季呈弱酸性,冬季呈弱碱性;PM2.5中硫氧化率(SOR)、氮氧化率(NOR)的均值分别为0.53和0.27,大气中存在明显的二次转化过程;N O 3 - ∕S O 4 2 - 为1.66,说明机动车尾气排放源对PM2.5中水溶性无机离子贡献较大;根据N H 4 + 与S O 4 2 - 、N O 3 - 、Cl -的相关性分析,PM2.5中N O 3 - 和S O 4 2 - 以(NH4)2SO4、NH4HSO4、NH4NO3以及HNO3形式存在。利用SPSS软件进行皮尔森相关性分析,PM2.5中N O 3 - 、S O 4 2 - 、N H 4 + 两两相关性强,说明二次反应显著;Ca 2+、Mg 2+、Na + 两两相关性强,说明其污染来源可能相同;Cl -与K +相关性强,说明大气中Cl -主要以KCl的形式存在。利用因子分析模块进行主成分分析,发现延庆区主要污染源为生物质燃烧、扬尘污染和机动车尾气排放。  相似文献   

6.
鼎湖山PM2.5 中水溶性离子浓度特征分析   总被引:6,自引:6,他引:0  
赵亚南  王跃思  温天雪  刘全 《环境科学》2013,34(4):1232-1235
为研究珠江三角洲背景区域大气气溶胶中水溶性离子的特征及其来源,于2007年1月~2008年12月,在鼎湖山利用大流量滤膜采样器采集PM2.5样品,并用离子色谱(IC)分析其中的水溶性离子成分含量.结果表明,PM2.5中总水溶性离子年平均浓度为(36.3±16.4)μg.m-3.其中,3种主要离子SO24-、NH4+和NO3-占总离子浓度的89%;夏季受到来自海洋气团的影响,Na+和Cl-相关性明显增强,相关系数R2为0.91;NO3-/SO24-的平均值为0.32,表明固定源对鼎湖山地区污染的贡献更大;PM2.5中Σ阳离子电荷/Σ阴离子电荷的变化范围为0.44~2.59,平均值是1.03,水溶性离子电荷基本平衡.  相似文献   

7.
为探究《大气污染防治行动计划》实施后期成都大气PM2.5中水溶性无机离子(WSIIs)季节变化及来源等特征,本研究于2016~2017年在成都城区进行了分季节PM2.5样品的连续采集,对其中WSIIs进行了全面分析.结果表明,成都市年均ρ(PM2.5)和ρ(WSIIs)分别为(114.0±76.4)μg.m-3和(41.2±31.3)μg.m-3,ρ(WSIIs)可占ρ(PM2.5)的36.1%,其季节贡献特征为:秋季(39.5%)>冬季(38.2%)>春季(32.5%)>夏季(28.9%).全年及各季节P(PM2.5)和ρ(WSIIs)均值均表现为夜间高于白天,且昼夜差异幅度呈现出了明显的季节变化特征.SNA(SO42-、N03-和NH4+)是WSⅡs的重要组成,在春、夏、秋和冬这4季中可占到整体ρ(WSIIs)的84.2%、86.6%、86.3%和87.0%.秋和冬的ρ(NO3)/ρ(SO42-)比值分别为1.1和1.6,高于春和夏的0.96和0.57,移动源和固定源相对贡献随季节变化特征明显.观测期间WSIIs主要来源包括二次生成、扬尘源和燃烧源.后向轨迹分析表明,来自成都东部地区的近地气团对应的P(PM2.5)低于源自西部的高空气团,就WSIIs构成而言,东部气团对应的ρ(SO42-)占比高于西部气团,而西部气团对应的ρ(NO3-)占比则高于前者.  相似文献   

8.
为了研究漯河市PM2.5和PM10及其水溶性离子变化特征,于2017年5月—2018年2月在漯河市3个采样点同步采集PM2.5和PM10样品,分别获得PM2.5和PM10有效样品191和190个.用离子色谱法分析样品中F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等9种水溶性无机离子.结果表明:在采样期间,漯河市ρ(PM2.5)平均值为72.42 μg/m3,其中ρ(总无机水溶性离子)的年均值为34.76 μg/m3,占ρ(PM2.5)的46.72%;ρ(PM10)平均值为126.52 μg/m3,其中ρ(总无机水溶性离子)的年均值为46.40 μg/m3,占ρ(PM10)的35.67%.2种颗粒物水溶性离子质量浓度的季节性变化均呈冬季高、夏季低的趋势.PM2.5/PM10〔ρ(PM2.5)/ρ(PM10)〕在四季分别为0.50、0.61、0.56、0.57.采样期间漯河市PM2.5中NOR(氮氧化率)和SOR(硫氧化率)的年均值分别为0.17和0.30,PM10中NOR和SOR的年均值分别为0.22和0.34,说明颗粒物中SO42-的二次转化效率高于NO3-.PM2.5和PM10在采样期间均呈弱碱性,且碱性在夏季最强,秋季最弱.利用PMF模型分析PM2.5和PM10中水溶性离子的主要来源发现,PM2.5中水溶性离子来源主要包括生物质燃烧源、燃煤源、建筑扬尘源、工业源和二次污染源,PM10中水溶性离子来源主要包括燃煤源、建筑扬尘源、二次污染源、生物质燃烧源和工业源.研究显示,漯河市颗粒物污染中水溶性离子来源复杂,应采取多源控制的污染防治措施.   相似文献   

9.
为研究盘锦市秋季PM_(2.5)中水溶性离子污染特征及来源,于2016年10月在盘锦市开发区、文化公园和第二中学采集PM_(2.5)样品,用离子色谱分析其水溶性离子.同时,分析了PM_(2.5)及水溶性离子浓度特征,并通过离子平衡计算、相关性分析和聚类分析对其污染特征和来源进行研究.结果表明:盘锦市秋季PM_(2.5)平均质量浓度为(52.71±19.44)μg·m~(-3),低于环境空气质量标准(GB 3095—2012)日均浓度限值(75μg·m~(-3)),不同点位之间表现为:开发区第二中学文化公园.开发区、文化公园和第二中学的水溶性离子总质量浓度分别为13.64、13.16和13.19μg·m~(-3),分别占PM_(2.5)浓度的22.83%、29.72%和24.36%,各点位均表现为NO~-_3、SO■和NH~+_4质量浓度较大.阴阳离子当量比值(AE/CE)均大于1,表明采样期间盘锦市颗粒物整体偏酸性.离子间相关关系分析显示,SNA的主要存在形式为(NH_4)_2SO_4、NH_4NO_3和KNO_3等.NO~-_3/SO■的均值为1.41,说明移动源对PM_(2.5)的贡献大于固定源.通过聚类分析得出,盘锦市秋季PM_(2.5)中水溶性离子主要来源于气态污染物的二次转化、生物质和化石燃料燃烧及土壤扬尘或建筑扬尘排放.  相似文献   

10.
为研究聊城市冬季PM2.5污染特征,于2016年1月7-29日在聊城市区对PM2.5样品进行了采集,并对其水溶性离子(包括F-、Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示:观测期间聊城市ρ(PM2.5)平均值为(192.4±88.9)μg/m3,超过GB 3095-2012《环境空气质量标准》日均二级标准限值的1.6倍.水溶性离子质量浓度为(77.4±46.9)μg/m3,占ρ(PM2.5)的40.2%,其中SNA(NO3-、SO42-和NH4+)为主要离子,占水溶性离子比例达82.5%.轻度、中度、重度及严重污染时PM2.5中水溶性离子质量浓度分别为(32.49±3.67)(46.26±17.66)(77.11±11.64)和(139.21±51.71)μg/m3,SNA分别占ρ(PM2.5)的24.4%、26.7%、30.4%和39.0%,随着污染程度加重,SNA比例升高.观测期间SOR(硫转化率)与NOR(氮转化率)的平均值分别为0.18和0.20,随着ρ(PM2.5)升高,SOR及NOR明显上升,表明冬季PM2.5污染越严重时SO2与NO2的转化速率越强,二次无机污染严重.主成分分析结果表明,二次转化、扬尘源及工业生产为水溶性离子的主要来源.后向气流轨迹结果显示,观测期间污染气团主要来源于西北方向,受内蒙古及河北城市影响较大,但当污染气团来源于周边城市且天气静稳时,颗粒物浓度最高.研究显示,聊城市冬季PM2.5污染较为严重.   相似文献   

11.
2014年10月至11月间,在北京城区开展PM_(2.5)监测并对其中的水溶性离子进行离线及在线分析.其中NO_3~-、SO_4~(2-)和NH_4~+在不同观测阶段均是PM_(2.5)中的主要离子,APEC期间三者总浓度为(26.8±22.5)μg·m~(-3),占PM2.5质量浓度的(41.7±8.5)%,占所测水溶性离子组分的(84.7±5.0)%;APEC期间NO-3浓度水平较高,对PM_(2.5)贡献最大.对APEC期间水溶性离子的累积趋势研究发现,NO_3~-、SO_4~(2-)、NH_4~+和Cl~-均经历了3个不同的累积过程,除气象条件外,本地源排放及区域污染引起的累积效应仍不可忽视.对颗粒物酸性特征研究发现,不同观测期间,颗粒物中主要水溶性离子浓度虽有不同,但北京秋末冬初颗粒物无明显酸化特征.  相似文献   

12.
高韩钰  魏静  王跃思 《环境科学》2018,39(5):1987-1993
为研究北京偏南地区细颗粒物(PM_(2.5))中水溶性无机离子的变化特征,利用大气细颗粒物快速捕集系统及化学成分分析系统RCFP-IC,于2016年对北京南郊区大兴PM_(2.5)中9种水溶性无机离子(Cl~-、NO_2~-、NO_3~-、SO_4~(2-)、Na~+、NH_4~+、K~+、Mg~(2+)和Ca~(2+))展开为期1 a的连续在线观测.结果表明,观测期间,9种水溶性无机离子总质量浓度为38.6μg·m~(-3),并呈现冬春高,夏秋低的特征,浓度水平高低顺序为SO_4~(2-)NO_3~-NH_4~+Ca~(2+)NO_2~-Cl~-Na~+K~+Mg~(2+);在冬季,SO_4~(2-)、NO_3~-和NH_4~+浓度占比高达75.7%;春季次之,为72.8%;夏季最低,仅为60.2%.并且随着空气污染的加剧,SO_4~(2-)、NO_3~-和NH_4~+浓度显著增加,这表明SO_4~(2-)、NO_3~-和NH_4~+与空气质量的恶化密切相关,但相比NO_3~-和NH_4~+,SO_4~(2-)在二次离子形成过程中占据主导地位;SO_4~(2-)、NO_3~-和NH_4~+存在显著的日变化特征,SO_4~(2-)统计日变化为双峰型,峰值分别出现在10:00和18:00左右,而NO_3~-和NH_4~+呈单峰型,峰值出现在10:00左右.基于后向轨迹聚类分析结果发现,对南郊区污染有影响的气团主要有3类,分别来自东南方向、西部和来自蒙古高原的高空气团,东南方向气流会加重南郊区水溶性盐的累积,而偏北气流有利于污染物扩散和稀释;基于主成分分析发现,北京南郊区水溶性盐的污染来源分别为二次源、燃煤源和土壤风沙尘及建筑扬尘的混合源.利用潜在源贡献因子分析法对南郊区冬季水溶性盐的潜在污染源区进行分析发现,影响大兴水溶性盐浓度潜在源区主要分布在南郊区的东南部.  相似文献   

13.
泉州市大气PM2.5中水溶性离子季节变化特征及来源解析   总被引:2,自引:0,他引:2  
为掌握泉州市大气PM_(2.5)中无机水溶性离子的季节变化特征,于2014年3月~2015年1月同步采集了泉州市5个采样点共116个PM_(2.5)样品.用离子色谱法分析了PM_(2.5)中Na~+、NH_4~+、K~+、Ca~(2+)、Mg~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)等9种水溶性无机离子.观测期间,总水溶性离子浓度季节变化特征为春季(14.24±6.43)μg·m~(-3)冬季(8.54±7.61)μg·m~(-3)夏季(4.10±2.67)μg·m~(-3)秋季(3.91±2.58)μg·m~(-3);SO_4~(2-)、NO_3~-和NH_4~+(SNA)是PM_(2.5)中主要的3种离子,占水溶性离子总质量浓度比例分别为春季(90.3±3.3)%、夏季(68.8±11.7)%、秋季(78.9±7.1)%和冬季(74.0±18.4)%,说明春季二次污染较为严重;PM_(2.5)中阴、阳离子电荷平衡分析显示,阴离子相对亏损,大气细颗粒物组分呈弱碱性;春、冬季NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3等形式存在,而夏、秋季则主要以NH_4HSO_4和NH_4NO_3形式存在;PMF源解析结果表明,泉州市大气PM_(2.5)中水溶性离子主要来自海盐、二次源、建筑扬尘、垃圾焚烧源和生物质燃烧源.  相似文献   

14.
为探讨盘锦市冬季PM_(2.5)水溶性离子污染特征和来源,于2017年1月采集3个点位的PM_(2.5)样品,用ICS-900离子色谱仪分析了8种离子(Na~+、Mg~(2+)、Ca~(2+)、K~+、NH_4~+、SO_4~(2-)、Cl~-和NO_3~-).开展了PM_(2.5)和离子浓度特征分析、硫氧化率(SOR)和氮氧化率(NOR)计算、离子平衡计算、主成分分析等.结果表明:盘锦市冬季PM_(2.5)浓度与水溶性离子浓度特征为文化公园开发区第二中学;SO_4~(2-)、NO_3~-、NH_4~+质量浓度较大;冬季硫氧化率(SOR)和氮氧化率(NOR)的均值均大于0.10,说明SO_4~(2-)、NO_3~-主要由SO_2和NO_x转化而来;阳离子和阴离子当量相关性较强;开发区整体上呈现出中性,文化公园与第二中学呈现出偏碱性;盘锦市PM_(2.5)中水溶性离子主要来源于煤烟尘,生物质燃烧,二次粒子以及扬尘.  相似文献   

15.
为研究本溪市大气PM2.5中水溶性离子污染特征,于2016年1—10月在本溪市开展PM2.5样品采集,使用离子色谱法分析了其中8种水溶性离子(Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+),并采用PMF(positive matrix factorization,正矩阵因子分解法)模型对水溶性离子的来源进行分析.结果表明:观测期间,本溪市ρ(PM2.5)平均值为(57.6±21.9)μg/m3,ρ(PM2.5)季节性变化特征明显,呈冬季 > 秋季 > 春季 > 夏季趋势;水溶性离子平均质量浓度为19.3 μg/m3,占ρ(PM2.5)的33.6%,各离子质量浓度高低顺序为SO42- > NO3- > NH4+ > Cl- > Ca2+ > K+ > Na+ > Mg2+;SNA(SO42-、NO3-和NH4+)是PM2.5中主要的3种离子,在春季、夏季、秋季和冬季分别占水溶性离子的73.2%、88.2%、82.5%和73.6%,表明夏季的二次污染较为严重.阴、阳离子电荷平衡分析结果显示,阴离子相对亏损,本溪市PM2.5整体呈弱碱性,NO3-、SO42-与NH4+相关性较高,其在PM2.5中主要以NH4NO3和NH4HSO4的形式存在. PMF分析结果表明,本溪市PM2.5中水溶性离子的来源主要包括二次转化源、燃煤源和扬尘源.研究显示,本溪市PM2.5中水溶性离子季节性变化特征明显,二次转化源、燃煤源和扬尘源是其主要来源.   相似文献   

16.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号