首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition.  相似文献   

2.

Background, aim, and scope

Heavy metals such as lead are well known to cause harmful health effects. Especially children are particularly susceptible to increased levels of lead in their blood. It is also a fact that lead concentration is increasing in the environment due to increased anthropogenic activity. The risk of heavy metal contamination is pronounced in the environment adjacent to large industrial complexes. In a combined case study, the environmental pollution by heavy metals was related to children’s health in the vicinity of an industrial area located 4 km south-east from Bucharest about 2 km east from the nearest town—Pantelimon. This site includes companies processing different, nonferrous solid wastes for recovery of heavy metals and producing different nonferrous alloys and lead batteries. In this paper, mainly the results of environmental sampling and analyses are summarized.

Materials and methods

Water, soil, and atmospheric deposition samples were collected from different locations within 3 km from the industrial area. For comparison, samples were also taken from Bucharest. Water samples were filtered (<0.45 μm), extracted by salpetric acid, and quantified by ICP-OES and ICP-MS. Soil samples were dried, sieved (<2 mm), extracted by aqua regia and analyzed by AAS. In order to quantify the atmospheric deposition, three kinds of permanently open collecting pots were used on nine different sites between August and November 2006.

Results

At most sampling locations, the heavy metal concentrations in soil decrease with increasing distance to the presumably major source of pollution. Highest heavy metal concentrations were found in 10–20 cm soil depths. There were also decreasing heavy metal concentrations for atmospheric deposition with increasing distance to the industrial site. In surface and groundwater samples, traces of zinc, copper and lead were detected.

Discussion

The heavy metal concentrations in soil were increased in the study area, mostly under legal action limits in low-concern areas (e.g., 1,000 mg Pb/kg dry soil), but often above action limits for high-concern areas (100 mg Pb/kg dry soil) such as populated areas. The soluble lead concentrations in water samples indicate a need for monitoring and assessing water quality in more detail. The results for atmospheric deposition showed increased dust precipitation and heavy metal loads in the study area compared to Bucharest. However, based on mass flow balance calculations, the actual atmospheric deposition of heavy metals must be much lower than it was in the past decades.

Conclusions

It was shown that highest lead values in water, soil and atmospheric deposition are rather to be found near the investigated industrial site than at the control sites in Bucharest. Our results correspond very well with results that show that children from Pantelimon have significantly increased lead concentrations in their blood compared to children in Bucharest. The increased lead contamination around the investigated industrial area is likely to have caused the increased exposure for children living in Pantelimon.

Recommendations and perspectives

In high-concern areas, such as found in populated areas, further measures have to be taken to avoid health risks for people living in these areas. The measures already taken to reduce emissions from the industrial site will help to avoid further increases in heavy metal concentrations. In areas with exceeded action limits, measures have to be taken as required by law. Detailed risk assessments could help to take necessary actions to protect public health in this area. The public should be informed about the potential hazards of eating plants grown in that area. Educational programs for schools, informing children about the contamination, should lead to a better understanding of environmental problems and a more sustainable behavior in the future.
  相似文献   

3.

Background, aim, and scope  

Heavy metals such as lead are well known to cause harmful health effects. Especially children are particularly susceptible to increased levels of lead in their blood. It is also a fact that lead concentration is increasing in the environment due to increased anthropogenic activity. The risk of heavy metal contamination is pronounced in the environment adjacent to large industrial complexes. In a combined case study, the environmental pollution by heavy metals was related to children’s health in the vicinity of an industrial area located 4 km south-east from Bucharest about 2 km east from the nearest town—Pantelimon. This site includes companies processing different, nonferrous solid wastes for recovery of heavy metals and producing different nonferrous alloys and lead batteries. In this paper, mainly the results of environmental sampling and analyses are summarized.  相似文献   

4.
BACKGROUND, AIMS AND SCOPE: Chromium enters into the aquatic environment as a result of effluent discharge from steel works, electroplating, leather tanning industries and chemical industries. As the Cr(VI) is very harmful to living organisms, it should be quickly removed from the environment when it happens to be contaminated. Therefore, the aim of this laboratory research was to develop a rapid, simple and adaptable solvent extraction system to quantitatively remove Cr(VI) from polluted waters. METHODS: Aqueous salt-solutions containing Cr(VI) as CrO4(2-) at ppm level (4-6 ppm) were prepared. Equal volumes (5 ml) of aqueous and organic (2-PrOH) phases were mixed in a 10 ml centrifuge tube for 15 min, centrifuged and separated. Concentrations of Cr(VI), in both the aqueous and organic phases, were determined by atomic absorption spectrometry. The effects of salt and acid concentrations, and phase-contact time on the extraction of Cr(VI) were investigated. In addition, the extraction of Cr(VI) was assessed in the presence of tetramethylammonium chloride (TMAC) in 2-PrOH phase. Effects of some other metals, (Cd(II), Co(II), Cu(II), Ni(II) and Zn(II)), on the extraction of Cr(VI) were also investigated. RESULTS AND DISCUSSION: The Cr(VI) at ppm level was extracted quantitatively by salting-out the homogeneous system of water and 2-propanol(2-PrOH) using chloride salts, namely CaCl2 or NaCl, under acidic chloride media. The extracted chemical species of Cr(VI) was confirmed to be the CrO3Cl-. The ion-pair complex extracted into the organic phase was rationalized as the solvated ion-pair complex of [2-PrOH2+, CrO3Cl-]. The complex was no longer stable. It implied the reaction between extracted species. Studies revealed that salts and acid directly participated in the formation of the above complex. Use of extracting agents (TMAC) didn't show any significant effect on the extraction of Cr(VI) under high salting-out conditions. There is no significant interference effect on the extraction of Cr(VI) by the presence of other metals. The Cr(VI) in the organic phase was back-extracted using an aqueous ammonia solution (1.6 mol dm(-3)) containing 3 mol dm(-3) NaCl. The extraction mechanism of Cr(VI) is also discussed. CONCLUSIONS: Salting-out of homogeneous mixed solvent of 2-propanol can be employed to extract Cr(VI) quantitatively, as an ion-pair of [2-PrOH2+ * CrO3Cl-] solvated by 2-PrOH molecules. Then, the complex becomes 'solvent-like' and is readily separated into the organic phase. The increase of Cl- ion concentration in the aqueous phase favors the extraction. The 2-PrOH, salts and acid play important roles in the extraction process. There is no need to use an extracting agent at a high salting-out condition. RECOMMENDATIONS AND PERSPECTIVES: Chromium(VI) must be quickly removed before it enters into the natural cycle. As the 2-PrOH is water-miscible in any proportion, ion-pairing between 2-PrOH2+ and CrO3Cl- becomes very fast. As a result, Cr(VI) can easily be extracted. Therefore, the method is recommended as a simple, rapid and adaptable method to quickly separate Cr(VI) from aqueous samples.  相似文献   

5.
Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning.  相似文献   

6.
Heavy metal contamination in the seaweeds of the Venice lagoon   总被引:8,自引:0,他引:8  
The concentrations of heavy metals (Fe, Zn, Cu, Cd, Ni, Pb, Cr, As) were determined in seven seaweeds of environmental and commercial relevance (Ulva rigida C. Ag., Gracilaria gracilis (Stackhouse) Steentoft, L. Irvine and Farnham, Porphyra leucosticta Thuret, Grateloupia doryphora (Montagne) Howe., Undaria pinnatifida (Harv.) Suringar, Fucus virsoides J. Agardh, Cystoseira barbata (Good. et Wood.) Ag.) collected in four sampling sites in the lagoon of Venice, in spring and autumn 1999. Metals were extracted using hot concentrated acids in a Microwave Digestion Rotor and analysed by absorption spectrophotometry using a flame mode for Fe and Zn and a graphite furnace for Pb, Cr, Cd, Cu, Ni and As. High contamination levels, especially for Pb, were detected in Ulva and to a lesser extent in Gracilaria. Brown seaweeds, especially Cystoseira was highly contaminated by As. The least contaminated genera with all metals except As were Porphyra and Undaria. A concentration decrease for Zn and Cd was observed from the inner parts of the central lagoon, close to the industrial district, towards the lagoon openings to the sea.  相似文献   

7.
锑矿区土壤重金属污染及优势植物对重金属的富集特征   总被引:4,自引:0,他引:4  
通过野外调查采样,分析了冷水江锑矿区4个采样点土壤和优势植物中重金属含量,以及矿区生长的5种优势植物对Sb、As、Cd、Pb、Cu和Zn的的吸收与富集能力及其富集特性。结果表明,矿区土壤中6种重金属元素的平均含量均超出湖南省土壤背景值和全国土壤背景值,土壤受Sb污染最严重,其次是Cd、As的污染。5种优势植物淡竹叶、苎麻、芒草、狗尾草和白背叶体内Sb、As的含量都超过正常范围,具有修复矿区土壤Sb、As污染的潜力。其中苎麻对Sb的富集系数和转运系数均大于1,满足Sb超富集植物的基本特征,可作为生态恢复的先锋植物;芒草对Cd的富集系数和转运系数都大于1,对重金属有较强的耐性,作为重金属污染的修复植物具有较好的应用前景。  相似文献   

8.
9.
This study presents results from a yearlong particulate matter measurement campaign, conducted across the Greater Athens Area, at four locations, between 1st June 2001 and 31st May 2002. The collected PM(10) 24-h samples were analyzed for nine toxic metals and metalloids (Pb, As, Cd, Ni, Cr, Mn, V, Cu, Hg). Concerning the five elements regulated by the European Union, annual average concentrations of Pb were found below the limit values at all sites, Cd and Ni concentrations were lower than the prospective assessment thresholds at all sites, concentrations of As exceeded the assessment threshold at two sites, while concentrations of Hg were found below detection limits in all samples. Concentration levels of Mn and V were in compliance with the values proposed by the World Health Organization. The seasonal and spatial variability of metal concentrations was examined and site-specific correlation analysis was conducted for the identification of metals with similar origin. The association between trace metals and NO(x) concentrations was explored to account for the impact of automotive sources, at two traffic-impacted sites. Cu was the metal most closely linked with the road transport sector. The relation of concentration levels with the prevalence of winds from different sectors was studied in an effort to investigate the transport of metal particles from various zones of the city. Finally, factor analysis was carried out to extract the main components responsible for the variance of the dataset and to attribute them to specific source categories, with vehicle-related sources being important in all cases.  相似文献   

10.
Microbial indicators of heavy metal contamination in urban and rural soils   总被引:10,自引:0,他引:10  
Urban soils and especially their microbiology have been a neglected area of study. In this paper, we report on microbial properties of urban soils compared to rural soils of similar lithogenic origin in the vicinity of Aberdeen city. Significant differences in basal respiration rates, microbial biomass and ecophysiological parameters were found in urban soils compared to rural soils. Analysis of community level physiological profiles (CLPP) of micro-organisms showed they consumed C sources faster in urban soils to maintain the same level activity as those in rural soils. Cu, Pb, Zn and Ni were the principal elements that had accumulated in urban soils compared with their rural counterparts with Pb being the most significant metal to distinguish urban soils from rural soils. Sequential extraction showed the final residue after extraction was normally the highest proportion except for Pb, for which the hydroxylamine-hydrochloride extractable Pb was the largest part. Acetic acid extractable fraction of Cd, Cu, Ni, Pb and Zn were higher in urban soils and aqua regia extractable fraction were lower suggesting an elevated availability of heavy metals in urban soils. Correlation analyses between different microbial indicators (basal respiration, biomass-C, and sole C source tests) and heavy metal fractions indicated that basal respiration was negatively correlated with soil Cd, Cu, Ni and Zn inputs while soil microbial biomass was only significantly correlated with Pb. However, both exchangeable and iron- and manganese-bound Ni fractions were mostly responsible for shift of the soil microbial community level physiological profiles (sole C source tests). These data suggest soil microbial indicators can be useful indicators of pollutant heavy metal stress on the health of urban soils.  相似文献   

11.
Our work was conducted to investigate the heavy metal toxicity of tailings and soils collected from five metal mines located in the south of Morocco. We used the MetPAD biotest Kit which detects the toxicity specifically due to the heavy metals in environmental samples. This biotest initially developed to assess the toxicity of aquatic samples was adapted to the heterogeneous physico-chemical conditions of anthropogenic soils. Contrasted industrial soils were collected from four abandoned mines (A, B, C and E) and one mine (D) still active. The toxicity test was run concurrently with chemical analyses on the aqueous extracts of tailings materials and soils in order to assess the potential availability of heavy metals. Soil pH was variable, ranging from very acidic (pH 2.6) to alkaline values (pH 8.0-8.8). The tailings from polymetallic mines (B and D) contained very high concentrations of Zn (38,000-108,000 mg kg(-1)), Pb (20,412-30,100 mg kg(-1)), Cu (2,019-8,635 mg kg(-1)) and Cd (148-228 mg kg(-1)). Water-extractable metal concentrations (i.e., soil extracts) were much lower but were highly toxic as shown by the MetPAD test, except for soils from mines A, E and site C3 from mine C. The soil extracts from mine D were the most toxic amongst all the soils tested. On this site, the toxicity of soil water extracts was mainly due to high concentrations of Zn (785-1,753 mg l(-1)), Cu (1.8-82 mg l(-1)) and Cd (2.0-2.7 mg l(-1)). The general trend observed was an increase in metal toxicity measured by the biotest with increasing available metal contents in tailings materials and soils. Therefore, the MetPAD test can be used as a rapid and sensitive predictive tool to assess the heavy metal availability in soils highly contaminated by mining activities.  相似文献   

12.
Sequential extractions of metals can be useful to study metal distributions in various soil fractions. Although several sequential extraction procedures have been suggested in the literature, most were developed for temperate soils and may not be suitable for tropical soils with high contents of Mn and Fe oxides. The objective of this study was to develop a sequential fractionation procedure for Cu and Zn in tropical soils. Extractions were performed on surface (0–20 cm) samples of ten representative soils of Sao Paulo State, Brazil. Chemically reactive Mn forms were satisfactorily assessed by the new modified procedure. Amorphous and crystalline Fe oxides were more selectively extracted in a new two-step extraction. Soil-born Zn and Cu were primarily associated with recalcitrant soil fractions. The proposed procedure provided more detailed information on metal distribution in tropical soils and better characterization of the various components of the soil matrix. The new procedure is expected to be an important tool for predicting the potential effects of environmental changes and land application of metals on the redistribution of chemical forms of metals in tropical soils.  相似文献   

13.
An intensive investigation was conducted to study the distribution of trace metals in surface soils of Hong Kong and to assess the soil environmental quality. From results of cluster analysis, and comparisons among soil types and areas, it is clearly shown that increases in trace metal concentrations in the soils were generally extensive and obvious in urban and orchard soils, less so in vegetable soils, whilst rural and forest soils were subjected to the least impact of anthropogenic sources of trace metals. However, some of the forest soils also contained elevated levels of As, Cu, and Pb. Urban soils in Hong Kong were heavily polluted by Pb from gasoline combustion. Agricultural soils, both orchard and vegetable soils, usually accumulated As, Cd, Cu, and Zn originating from applications of pesticides, animal manures, and fertilizers. In general, trace metal pollution in soils of the industrial areas and Pb pollution in the soils of the commercial and residential areas were obvious.  相似文献   

14.
The geochemical characteristics of some heavy metals (Cr, Cd, Pb, Zn and Ni) in the river and sea sediments, in the soil and in the river and groundwater of an estuary on the southeast coast of Turkey have been studied. In the sea sediments, the wastes from a chromium factory control these metal concentrations. The heavy metal contamination in the river sediments results from an existing chromite mine at the northern part of the area. These heavy metals are concentrated in the soil, but they do not penetrate into the groundwater because of the low permeability of the unsaturated zone in the region.  相似文献   

15.
新乡市区公园土壤重金属含量及其污染评价   总被引:1,自引:0,他引:1  
对新乡市区6个有代表性的公园土壤重金属含量进行调查,结果发现该市区6个公园表层土壤中Pb、Cr、Cd和Zn的平均值分别为63.22、91.35,0.57、115.63 mg/kg.以河南省土壤背景值为标准,采用内梅罗指数法综合评价土壤污染程度.结果表明,6个公园土壤中Cr、Zn为轻度污染,Pb为中度污染,Cd为重度污染.燃烧含Pb燃料油、印刷纸品和塑料及大气污染是土壤重金属污染的主要原因.  相似文献   

16.
Heavy metal pollution of soils along North Shuna-Aqaba Highway, Jordan   总被引:1,自引:0,他引:1  
Attention to heavy metal contamination associated with highways or motorways has risen in the last decades because of the associated health hazards and risks. The present study analysed the metal content in soil samples of one of the main highways along the western part of the Jordanian border, the North Shuna–Dead Sea–Aqaba Highway. The metals analysed were Pb, Zn, Cd, Co and Ni. In the samples collected, the recorded average concentrations were as follows: 40 ppm for Ni, 5 ppm for Cd, 79 ppm for Zn, 79 ppm for Pb, and 25 ppm for Co. The average concentrations of Cd, Pb, and Co are higher than the average natural background values of heavy metals. The geo-accumulation index of these metals in the soils under study indicated that they are uncontaminated with Ni, Zn, and Co and moderately contaminated with Cd and Pb. In all of the investigated locations, the study found that concentrations decreased with depth. The cluster statistical analyses and pollution load index were used to relate pollution to land use or highway conditions. Two main trends were identified: (i) higher concentrations were located near intersections close to the urban areas in the Jordan Valley, in association with junctions controlled by traffic lights and check points; and (ii) lower concentrations were found to the southwest in areas of mainly barren landscape close to the Dead Sea and Aqaba.  相似文献   

17.
The heavy metal content of pine forest soil was studied near the boundary between Russia and Estonia, an area characterized by large amounts of acidic and basic air pollutants, mainly sulfur dioxide and calcium. Alkalization dominates the processes in soil, since sulfur is adsorbed only in small quantities, and calcium is much better adsorbed. In addition to Ca, great amounts of Al, Fe, K, and Mg are accumulated in the humus layer due to air pollution. The heavy metal content has increased. The exchangeable content of heavy metals was in many cases much higher in polluted alkaline soils than in non-polluted acidic soils, even the ratio of exchangeable to total metal content being higher in alkaline plots. To avoid a dangerous increase in soluble heavy metal content, it is important to decrease not only the large sulfur emissions of local pollutant sources, but also the alkaline pollutants. A similar concern must be taken into account when liming of acidic forest soils is planned.  相似文献   

18.
Environmental Science and Pollution Research - Due to rapid urbanization, industrialization, agricultural development, and mining activities, soil heavy metal pollution has become a severe issue in...  相似文献   

19.
The study of regional variations and the anthropogenic contamination by metals of soils is very important for environmental planning and monitoring in urban areas. An extensive survey was conducted in the highly urbanized Kowloon area (46.9 km(2)) of Hong Kong, using a systematic sampling strategy with a sampling density of 3-5 composite soil samples (0-15 cm) per km(2). Geochemical maps of 'total' metals (Cd, Cr, Cu, Ni, Pb and Zn) from strong acid extraction in the surface soils were produced based on geographical information system (GIS) technology. A significant spatial relationship was found for Ni, Cu, Pb and Zn in the soils using a GIS-based analysis, suggesting that these metal contaminants in the soils of the Kowloon area had common sources. Several hot-spot areas of metal contamination were identified from the composite metal geochemical map, mainly in the old industrial and residential areas. A further GIS analysis revealed that road junctions, major roads and industrial buildings were possible sources of heavy metals in the urban soils. The Pb isotope composition of the contaminated soils showed clear anthropogenic origins.  相似文献   

20.
Environmental Science and Pollution Research - The presence of toxic substances in aquifers, particularly potentially toxic heavy metals, is an important environmental and social concern worldwide....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号