首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human health effects of air pollution   总被引:21,自引:0,他引:21  
Hazardous chemicals escape to the environment by a number of natural and/or anthropogenic activities and may cause adverse effects on human health and the environment. Increased combustion of fossil fuels in the last century is responsible for the progressive change in the atmospheric composition. Air pollutants, such as carbon monoxide (CO), sulfur dioxide (SO(2)), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone (O(3)), heavy metals, and respirable particulate matter (PM2.5 and PM10), differ in their chemical composition, reaction properties, emission, time of disintegration and ability to diffuse in long or short distances. Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs. It ranges from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks. In addition, short- and long-term exposures have also been linked with premature mortality and reduced life expectancy. These effects of air pollutants on human health and their mechanism of action are briefly discussed.  相似文献   

2.
The extent of yield reduction and economic loss caused by air pollution has been estimated for The Netherlands. Based on available data on direct effects only, each species was designated as sensitive, moderately sensitive or tolerant. On a nationwide scale, only ozone (O3), sulphur dioxide (SO2), and hydrogen fluoride (HF) exceeded effect thresholds. Effects from pollutant combinations were assumed to be additive. Yield reductions were calculated, using 10 exposure-response relationships and concentration data from the Dutch air pollution monitoring network. Changes in air pollution levels result in changes in supply. By multiplying the supply with the current price, the so-called crop volume was calculated. Subsequently, changes in crop volume were converted into economic terms, taking into account demand elasticity. On the basis of these calculations, air pollution in The Netherlands reduces total crop volume by 5%:3.4% by O3, 1.2% by SO2, and 0.4% by HF. The slope of the nonlinear relationship between crop volume reduction and exposure level increases at higher concentrations. In general, air pollution causes relatively little loss to producers, since yield reductions are largely compensated by higher prices. If air pollution in The Netherlands would be reduced to background concentrations, consumers would experience a net gain of Dfl 640 million (US 320 million dollars). Although large amounts of data were attained through literature and our own experience for this study, many assumptions still had to be made to arrive at these conclusions. With the current available knowledge, validation of our results in the field is not yet possible.  相似文献   

3.
Environmental Science and Pollution Research - This study estimated health risks due to two types of copper-based nanoagrochemicals (Cu (OH)2 and CuO nanoparticles (NPs)), during inadvertent...  相似文献   

4.

Annoyance caused by air pollution is a matter of public health as it can cause stress and ill-health and affect quality of life, among other burdens. The aim of this study is to apply the multiple correspondence analyses (MCA) technique as a differential tooling to explore relationships between variables that can influence peoples’ behaviour concerning annoyance caused by air pollution. Data were collected through a survey on air pollution, environmental issues and quality of life. Face-to-face survey studies were conducted in two industrialized urban areas (Vitoria in Brazil and Dunkirk in France). These two regions were chosen as their inhabitants often report feeling annoyed by air pollution, and both regions have similar industrial characteristics. The results showed a progressive correspondence between levels of annoyance and other active variables in the “air pollution” factor group: as the levels of annoyance increased, the levels of the other qualitative variables (importance of air quality, perceived exposure to industrial risk, assessment of air quality, perceived air pollution) also increased. Respondents who reported feeling annoyed by air pollution also thought that air quality was very important and were very concerned about exposure to industrial risks. Furthermore, they often assessed air quality as horrible, and they could frequently perceive air pollution by dust, odours and decreased visibility. The results also showed a statistically significant association between occurrence of allergies and high levels of annoyance.

  相似文献   

5.
6.
BACKGROUND, AIM AND SCOPE: The volatile organic compounds Benzene, Toluene, Ethylbenzene and Xylene (BTEX) are commonly found in petroleum derivatives and, at relatively high levels, can be associated with human health risks. Due to industrial activities, accidental petroleum spills are the main route of soil and groundwater contamination. The aim of the present study was to evaluate the indoor health risks due to tap water consumption contaminated by BTEX. MATERIALS AND METHODS: BTEX indoor exposure can occur through three principal pathways: inhalation, ingestion and dermal absorption. A multiphase and multicomponent model was used to simulate BTEX transport in groundwater. For evaluation of human risks due to the use of contaminated tap water, a mathematical model was elaborated. RESULTS: BTEX concentrations in a drinking well were obtained as a function over time. These concentrations were used to obtain the exposure due to the use of water from the contaminated drinking well. In addition to showing the highest concentration in water, benzene was the compound that remained for a longer period before being completely degraded. For all the evaluated BTEX, oral ingestion was also the main pathway of exposure for adults, whereas the contribution of inhalation and oral exposition in children were seen to be of the same magnitude. The sensitivity analysis of BTEX total dose for adults showed that direct ingestion was the most significant factor, followed by shower time, volume of the shower room, inhalation rate, and shower flow rate. For children, the most significant variable was also direct ingestion, followed by shower time, volume of the shower room, and body weight. DISCUSSION: In the current design situation, there would not be any health risks by the use of BTEX-contaminated water to the general population living in the neighborhood of the petroleum spill. Therefore, no remediation measures in the area of the spill would be necessary. CONCLUSIONS: The present results indicate that the design of a good scenario can perform an accuracy risk assessment. This model can serve as a useful tool for predicting indoor exposure to substances for which no direct data are available, reducing monitoring efforts and observing how different processes affect outcomes. RECOMMENDATIONS AND PERSPECTIVES: These preliminary data allow the establishment of a basis for further investigations focusing on efficiently recovering petroleum from contaminated sites.  相似文献   

7.
8.
9.
Using the methodology of the ExternE Project of the European Commission, we have evaluated the damage costs of automotive air pollution by way of two case studies in France: a trip across Paris, and a trip from Paris to Lyon. This methodology involves an analysis of the impact pathways, starting with the emissions (e.g., g/km of particles from tailpipe), followed by local and regional dispersion (e.g., incremental μg/m3 of particles), calculation of the physical impacts using exposure-response functions (e.g., cases of respiratory hospital admissions), and finally multiplication by unit costs factors (e.g.,
  1. Download : Download full-size image
per hospital admission). Damages are aggregated over all affected receptors in Europe. In addition to the local and regional dispersion calculations carried out so far by ExternE, we also consider the increased microscale impacts due to the trapping of pollutants in street canyons, using numerical simulations with the FLUENT software. We have evaluated impacts to human health, agricultural crops and building materials, due to particles, NOx, CO, HC and CO2. Health impacts, especially reduced life expectancy, dominate in terms of cost. Damages for older cars (before 1997) range from 2 to 41 Euro cents/km, whereas for newer cars (since 1997), the range 1–9 Euro cents/km, and there is continuing progress in reducing the emissions further. In large cities, the particulate emissions of diesel cars lead to the highest damages, exceeding those of gasoline cars by a factor of 7. For cars before 1997 the order of magnitude of the damage costs is comparable to the price of gasoline, and the loss of life expectancy is comparable to that from traffic accidents.  相似文献   

10.
11.
Environmental Science and Pollution Research - Air pollution has become a threat to human health in urban settlements, ultimately leading to negative impacts on overall economic system as well....  相似文献   

12.
Inhalation transfer factors for air pollution health risk assessment   总被引:1,自引:0,他引:1  
To facilitate routine health risk assessments, we develop the concept of an inhalation transfer factor (ITF). The ITF is defined as the pollutant mass inhaled by an exposed individual per unit pollutant mass emitted from an air pollution source. A cumulative population inhalation transfer factor (PITF) is also defined to describe the total fraction of an emitted pollutant inhaled by all members of the exposed population. In this paper, ITFs and PITFs are calculated for outdoor releases from area, point, and line sources, indoor releases in single zone and multizone indoor environments, and releases within motor vehicles. Typical PITFs for an urban area from emissions outdoors are approximately 10(-6)-10(-3). PITFs associated with emissions in buildings or in moving vehicles are typically much higher, approximately 10(-3)-10(-1).  相似文献   

13.
Biological research has established that air pollution can affect the yield and quality of agricultural crops. Economic assessments of crop exposure to air pollution have focused on the yield effect. This study illustrates the implications of considering crop quality effects in addition to crop yield changes for the case of O3 impacts on soybeans. An economic model of US soybean, soybean oil, and soybean meal markets is used to simulate the impacts of increased soybean yields due to reduced O3 concentrations with and without changes in soybean quality. The simulations with quality effects are richer in their distributional implications and show larger increases in economic surplus than the simulations with yield effects only.  相似文献   

14.
Environmental Science and Pollution Research - This study aimed to determine the effect of land-use changes on the non-carcinogenic health risk of nitrate ion exposure of underground drinking water...  相似文献   

15.
The problem of making quantitative assessments of the risks associated with human exposure to toxic contaminants in the environment is a pressing one. This study demonstrates the capability of a new computational technique involving the use of fuzzy logic and neural networks to produce realistic risk assessments. The systematic analysis of human exposure involves the use of measurements and models, the results of which are sometimes used in regulatory decisions or in the drafting of legislation. Because of limited scientific understanding, however, interpretation of models often involves substantial uncertainty. Extensive measurement programs can be very expensive. The high complexity and inherent heterogeneity of exposure analysis is still a major challenge. The approach to this challenge tested here is to use a new model incorporating sophisticated artificial intelligence algorithms. Exposure assessment often requires that a number of factors be evaluated, including exposure concentrations, intake rates, exposure times, and frequencies. These factors are incorporated into a system that can "learn" the relevant relationships based on a known data set. The results can then be applied to new data sets and thus be applied widely without the need for extensive measurements. In this analysis, an example is developed for human health risk through inhalation exposure to benzene from vehicular emissions in the cities of Auckland and Christchurch, New Zealand. Risk factors considered were inhaled contaminant concentration, age, body weight, and activity patterns of humans. Three major variables affecting the inhaled contaminant concentration were emissions (mainly from motor vehicles), meteorology (wind speed, temperature, and atmospheric stability), and site factors (hilly, flat, etc.). The results are preliminary and used principally to demonstrate the technique, but they are very encouraging.  相似文献   

16.
Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM10, PM2.5, and PM1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m−3 for coarse (TSP–PM10), intermediate (PM10–PM2.5), fine (PM2.5–PM1), and very fine particles (PM1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles (r=0.10, p=0.58), moderate for the intermediate particles (r=0.49, p<0.01) but strong for fine (r=0.89, p<0.01) and very fine (r=0.90, P<0.01) particles. PM10 exposures while walking were on average 70% higher than a nearby roadside fixed-site monitor whilst in-car exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.  相似文献   

17.
The emission-exposure and exposure-response (toxicity) relationships are different for different emission source categories of anthropogenic primary fine particulate matter (PM2.5). These variations have a potentially crucial importance in the integrated assessment, when determining cost-effective abatement strategies. We studied the importance of these variations by conducting a sensitivity analysis for an integrated assessment model. The model was developed to estimate the adverse health effects to the Finnish population attributable to primary PM2.5 emissions from the whole of Europe. The primary PM2.5 emissions in the whole of Europe and in more detail in Finland were evaluated using the inventory of the European Monitoring and Evaluation Programme (EMEP) and the Finnish Regional Emission Scenario model (FRES), respectively. The emission-exposure relationships for different primary PM2.5 emission source categories in Finland have been previously evaluated and these values incorporated as intake fractions into the integrated assessment model. The primary PM2.5 exposure-response functions and toxicity differences for the pollution originating from different source categories were estimated in an expert elicitation study performed by six European experts on air pollution health effects. The primary PM2.5 emissions from Finnish and other European sources were estimated for the population of Finland in 2000 to be responsible for 209 (mean, 95% confidence interval 6–739) and 357 (mean, 95% CI 8–1482) premature deaths, respectively. The inclusion of emission-exposure and toxicity variation into the model increased the predicted relative importance of traffic related primary PM2.5 emissions and correspondingly, decreased the predicted relative importance of other emission source categories. We conclude that the variations of emission-exposure relationship and toxicity between various source categories had significant impacts for the assessment on premature deaths caused by primary PM2.5.  相似文献   

18.
This study aimed to characterize air pollution and the associated carcinogenic risks of polycyclic aromatic hydrocarbon (PAHs) at an urban site, to identify possible emission sources of PAHs using several statistical methodologies, and to analyze the influence of other air pollutants and meteorological variables on PAH concentrations.The air quality and meteorological data were collected in Oporto, the second largest city of Portugal. Eighteen PAHs (the 16 PAHs considered by United States Environment Protection Agency (USEPA) as priority pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were collected daily for 24 h in air (gas phase and in particles) during 40 consecutive days in November and December 2008 by constant low-flow samplers and using polytetrafluoroethylene (PTFE) membrane filters for particulate (PM10 and PM2.5 bound) PAHs and pre-cleaned polyurethane foam plugs for gaseous compounds. The other monitored air pollutants were SO2, PM10, NO2, CO, and O3; the meteorological variables were temperature, relative humidity, wind speed, total precipitation, and solar radiation. Benzo[a]pyrene reached a mean concentration of 2.02 ng?m?3, surpassing the EU annual limit value. The target carcinogenic risks were equal than the health-based guideline level set by USEPA (10?6) at the studied site, with the cancer risks of eight PAHs reaching senior levels of 9.98?×?10?7 in PM10 and 1.06?×?10?6 in air. The applied statistical methods, correlation matrix, cluster analysis, and principal component analysis, were in agreement in the grouping of the PAHs. The groups were formed according to their chemical structure (number of rings), phase distribution, and emission sources. PAH diagnostic ratios were also calculated to evaluate the main emission sources. Diesel vehicular emissions were the major source of PAHs at the studied site. Besides that source, emissions from residential heating and oil refinery were identified to contribute to PAH levels at the respective area. Additionally, principal component regression indicated that SO2, NO2, PM10, CO, and solar radiation had positive correlation with PAHs concentrations, while O3, temperature, relative humidity, and wind speed were negatively correlated.  相似文献   

19.
20.
Environmental Science and Pollution Research - The soiling of the external façades of buildings caused by air pollution has economic costs that are generally not borne entirely by the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号