首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 935 毫秒
1.
基于空气质量数据、天气图、常规地面气象观测数据、秒探空资料以及高分辨率的降水数据,剖析了2015年12月19—27日发生在我国东部地区的一次大范围重度污染过程的特征及成因.结果表明,此次污染过程中,我国东部地区主要受到东路冷高压、均压场以及西路冷高压的影响,在东路冷空气及均压场的影响下,BTH(Beijing-Tianjin-Hebei)地区污染物不断累积,西路冷空气影响下污染物浓度开始降低,YRD(Yangtze River Delta)地区在稳定的均压场下污染物不断累积.污染期间,BTH及YRD近地层均有逆温现象发生,且逆温层越厚、强度越大,污染越重.此外,较低的近地面风速、较高的相对湿度,亦不利于污染物的扩散稀释,导致此次重度污染事件的发生和持续.YRD地区在重度污染发生时,有降水现象发生,导致YRD地区PM2.5浓度呈现波动性变化.  相似文献   

2.
为了解福州市大气颗粒物污染状况,利用中国环境监测总站发布的实时大气环境监测资料,结合气象资料和HYSPLIT4轨迹模式,分析了2015年福州市大气颗粒物污染特征和典型污染过程.结果表明:2015年福州市ρ(PM10)、ρ(PM2.5)年均值分别为55.8和29.2μg/m3,均低于GB 3095-2012《环境空气质量标准》二级标准限值.颗粒物浓度季节性变化特征明显,表现为冬春季高、夏秋季低的变化特征. ρ(PM2.5)/ρ(PM10)为52%,普遍低于我国东部其他大中城市;日际变化明显,受混合层高度日变化和机动车排放的影响,呈双峰形态. ρ(PM2.5)/ρ(PM10)日变化趋势与ρ(PM10)日变化特征相反,即ρ(PM10)高时ρ(PM2.5)所占比例低,ρ(PM10)低时ρ(PM2.5)所占比例高,表明早晚高峰机动车排放所造成的颗粒物污染以粗颗粒物贡献为主.福州市颗粒物污染天气成因主要有"积累型"和"输送型"污染. 2015年1月5-6日发生的污染过程,是在一次静稳、高湿天气形势下,本地排放的污染物在不利于扩散的气象条件下聚集、二次转化,导致颗粒物浓度升高、能见度降低. 2015年1月17-19日的污染过程主要是北方污染物随冷空气输送南下,导致本地颗粒物浓度迅速升高、能见度迅速降低.研究显示,福州市PM10和PM2.5优良率较高,颗粒物污染主要发生于冬季,污染成因包括局地累积和区域输送.   相似文献   

3.
2020年1月宁夏回族自治区典型工业城市石嘴山市出现了长时间、高强度PM2.5污染天气.为揭示多因素综合作用对重污染天气的影响,在分析逐日空气质量指数(AQI)和常规污染物浓度变化特征的基础上,选取重点污染时段(2020年1月1—17日)为研究对象,基于环境空气质量数据、加密自动气象观测数据及NCEP再分析资料,采用统计分析、污染特征雷达图、气流后向轨迹聚类及天气诊断相结合的方法对重污染过程特征和成因进行分析.结果表明:①2020年1月1日、3日石嘴山市重污染天气主要受燃煤、工业(钢铁、焦化)和机动车等高强度污染排放影响,PM2.5主要来自一次源;9日重污染天气PM2.5受二次颗粒物生成影响显著,本地扬尘也有贡献,ρ(PM2.5)和AQI均达峰值,分别为216 μg/m3和266;其他时段重污染天气由污染物累积和混合造成.②乌海市及其周边污染气团跨区域传输是促使石嘴山市出现高强度PM2.5污染天气的另一重要因素,当巴彦淖尔市—乌海市—石嘴山市为一致偏北气流、风速小于2 m/s时,易使乌海市及其周边污染气团向南扩散,石嘴山市ρ(PM2.5)出现短时间爆发增长.③持续高湿静稳气象条件使污染天气长时间维持并加重,当欧亚大陆中高纬度500 hPa盛行纬向弱西风气流、近地面石嘴山市处在蒙古弱高压底部均压场、风向为弱偏北风或偏东风时,易形成持续性PM2.5污染天气;当风速减至0.7 m/s、相对湿度增至78%时,污染加重.研究显示,此次持续PM2.5重污染过程是本地高强度污染排放、二次颗粒物生成、区域传输与不利气象条件等因素综合影响和相互叠加的结果;当出现静稳、高湿等不利气象条件时,应加强对各类污染物排放的管控力度,同时充分利用石嘴山市及其周边加密自动气象观测资料,研判污染发展趋势和传输特征,及时开展与乌海市及其周边地区的大气污染联防联控.   相似文献   

4.
为了研究河北省边界层气象要素与PM2.5的关系,综合利用常规气象探测资料、逐小时地面自动站气象观测资料、环境监测站逐小时AQI及ρ(PM2.5)资料等进行了统计分析.结果表明:①冬季海平面气压低于1 030 hPa、24 h变压为-3.0~-2.0 hPa、地面相对湿度高于60%、露点温度高于-10 ℃时发生全省性重污染天气的可能性较大;而海平面气压高于1 040 hPa、24 h变压在4.0 hPa以上、地面相对湿度低于40%、露点温度低于-10 ℃时,有利于清洁天气的出现.清洁天气下边界层的盛行风向多与冷空气活动有关;污染天气下盛行风向有区域性差别,边界层小风(<3.0 m/s)的风速频率高于90%. ②过程雨量达到中雨及以上量级的降水对PM2.5具有较明显的清除作用,中雨量级降水对PM2.5清除速率约为2 h,但优良空气质量持续时间短,平均为15 h;大雨及以上量级的降水对PM2.5清除率达67.8%,并且优良空气质量可以持续27 h. ③与降水相比,风对PM2.5的清除作用更为显著.较强偏南风对空气质量有一定改善,但优良空气质量仅持续16 h;大于3.0 m/s的系统性偏北风对PM2.5清除率高达85.1%,优良空气质量持续长达32 h,空气质量的改善最为彻底.研究显示,PM2.5与边界层气象要素关系紧密,不同级别的风和降水对PM2.5的清除程度存在显著差异.   相似文献   

5.
2015年11月7-9日沈阳出现罕见的持续严重污染天气,采用环流形势、地面常规气象观测、污染物浓度观测、风廓线雷达及雨滴谱资料等,对此次污染成因进行了研究.结果表明:在此次严重污染天气过程中,连续22 h AQI≥500,首要污染物均为PM2.5,其异常峰值最高达到1308μg/m3;ρ(PM2.5)与ρ(PM10)、ρ(NO2)和ρ(CO)的相关系数分别达到0.996、0.602、0.891,并且ρ(PM2.5)与ρ(PM10)、ρ(CO)的正相关性更为显著;在污染的同时出现了降水,11月7和8日的日降水量分别为9.9和2.3 mm,但降水对污染物的稀释和清除作用并不明显.稳定的大尺度环流和对流层内中低层大气层结持续稳定、连续4个时次的探空曲线显示925~850 hPa之间存在多个逆温层(逆温强度最大可达5℃)、相对湿度较大(日均相对湿度在75%以上),是此次严重污染天气持续的有利气象条件.风廓线雷达探测的整层大气垂直速度很小,多介于-1~1 m/s之间,并且近地面2 m/s以下弱下沉的垂直速度为严重污染天气过程提供了较好的动力条件.此外,近地面风力可达3~4级,有利于上游污染物的水平输送.研究显示,此次严重污染天气过程还与外围秸秆集中燃烧所导致的大量污染物长距离输送有密切关联.   相似文献   

6.
气象条件对河北廊坊城市空气质量的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
气象条件是影响大气污染的重要因子.利用2013年3月—2014年2月廊坊颗粒物质量浓度监测资料、自动气象站观测资料和欧洲中期天气预报中心再分析资料,采用多种统计方法分析气象与污染的关系,量化天气形势和局地气象条件对城市颗粒物质量浓度变化的贡献.结果表明:天气形势是决定局地气象要素和城市空气质量的重要因子.当廊坊位于高压中心或高压后部时,大气层结稳定,易造成重污染;当廊坊位于高压前部(气压梯度较大)时,大气层结不稳定,易于污染物输送和扩散.利用客观天气分型结合污染物质量浓度统计分析方法,可以量化天气形势对城市空气质量的影响.在局地气象要素中,能见度与ρ(PM2.5)、ρ(PM10)相关性最高(相关系数分别为-0.75和-0.53,下同),其次依次为风速(-0.45和-0.31)、相对湿度(0.41和0.25)和温度(-0.15和-0.06).通过污染物浓度与局地风场关系分析发现,廊坊颗粒物质量浓度受天津市、河北省南部区域输送的影响明显,受北京区域输送的影响相对较弱.研究显示,气象条件可以解释廊坊ρ(PM2.5)和ρ(PM10)日均值变化的56%和49%,其在冬季对颗粒物质量浓度影响最为显著,春秋季次之,夏季影响最小.   相似文献   

7.
邱玲  刘芳  张祥  高天 《环境科学研究》2018,31(10):1685-1694
随着城市化和工业化进程的加快,空气颗粒物污染成为城市最为严峻的环境问题之一.依据植被的横向结构、竖向结构及植被类型3个因子对宝鸡市公园绿地进行划分,并选取11种不同植被结构的绿地,在分析地点、时间、风速、温度、相对湿度、绿地面积等环境因子对绿地内空气中ρ(PM2.5)和ρ(PM10)"本底效应"影响的基础上,探究不同植被结构绿地对空气颗粒物质量浓度削减作用的差异.结果表明:①在不同监测地点和监测时段内,ρ(PM2.5)和ρ(PM10)有极显著差异,植物养护管理程度较高的城市公园绿地对空气颗粒物质量浓度削减作用较为明显,一天中空气颗粒物质量浓度呈现出早晚高、中午低的变化趋势;②风速、温度、相对湿度对ρ(PM2.5)和ρ(PM10)有极显著影响,在晴朗、无风或微风天气条件下,ρ(PM2.5)和ρ(PM10)随风速的增大、温度的减小、相对湿度的增大而增大,且ρ(PM10)变化范围大于ρ(PM2.5);③1 hm2以下绿地面积的变化对ρ(PM2.5)和ρ(PM10)无显著影响;④不同植被结构绿地内ρ(PM2.5)无显著差异,但ρ(PM10)有极显著差异,其中开敞式以灌木为主的绿地中ρ(PM10)最低,多层闭合式阔叶林中ρ(PM10)最高,其余9种植被结构绿地削减作用居中且相近.研究显示,不同植被结构的城市公园绿地对ρ(PM2.5)和ρ(PM10)的削减作用存在一定的差异且受多种环境因素的共同制约,可为优化城市绿地植被结构进而有效改善空气质量提供依据.   相似文献   

8.
关中地区是我国大气污染的重点监测区域,为探究偏东风输送对关中地区冬季PM2.5重污染的影响,重点分析了2018年1月12-18日在偏东风输送影响下关中地区ρ(PM2.5)日均值的变化过程;利用WRF和CAMx模式对PM2.5重污染过程进行模拟并讨论其消长原因.结果表明:①冬季关中地区在高压脊和西南槽的控制下,偏东风将污染物输送至关中地区,加之关中地区地形阻滞,致使关中地区的ρ(PM2.5)上升.②研究期间,关中地区ρ(PM2.5)日均值范围为103~240 μg/m3,偏东风输送是导致此次重污染过程的重要原因.重污染的发生还与气象要素的变化有关,其中ρ(PM2.5)日均值与气温、相对湿度均呈滞后相关性.在ρ(PM2.5)日均值相等的情况下,相对湿度越大,能见度越低;随着ρ(PM2.5)日均值和相对湿度的升高,能见度下降的速率逐渐变慢.③根据WRF-CAMx的模拟结果,此次重污染过程中关中地区PM2.5污染输送关系不均衡,宝鸡市和咸阳市均以本地贡献为主,其本地贡献率超过45.00%,而渭南市接收关中地区其他城市及关中地区以外区域污染输送占比为69.82%;位于盆地中东部的咸阳市、西安市和渭南市的ρ(PM2.5)月均值均大于关中地区ρ(PM2.5)平均值;渭南市、西安市、运城市以及关中地区以外城市是此次关中地区跨市PM2.5污染输送的主要来源.研究显示,偏东风输送是关中地区此次大气重污染过程的重要原因.   相似文献   

9.
2018年11月23日-12月4日,京津冀及周边地区"2+26"城市出现了一次长时间、大范围、高强度的复合型大气重污染过程,为揭示区域性重污染过程中多因素的综合作用,利用气象资料、空气质量监测等多源数据以及区域污染特征雷达图,对京津冀及周边地区"2+26"城市此次重污染特征和成因进行分析.结果表明:根据PM2.5/PM10[ρ(PM2.5)/ρ(PM10),下同]可将此次重污染过程划分为4个阶段.第一阶段(2018年11月23-26日)PM2.5/PM10在0.5~1.0内波动,"2+26"城市大气扩散条件转差,一次污染物局地积累及SO2、NOx、NH3等气态污染物在高湿条件下二次转化是污染形成并发展的主要原因;第二阶段(11月27日)PM2.5/PM10突降至0.2左右,"2+26"城市北部受形成于蒙古国的沙尘影响,短时ρ(PM10)快速升高(峰值为818 μg/m3),中南部受形成于内蒙古自治区阿拉善盟的沙尘及上风向PM2.5污染的传输影响,ρ(PM2.5)和ρ(PM10)均较高,维持日均重度污染水平(参照GB 3095-2012《环境空气质量标准》和HJ 633-2012《环境空气质量指数(AQI)技术规定(试行)》);第三阶段(11月28日-12月2日)PM2.5/PM10由0.3逐渐升至0.8,在静稳、高湿的不利气象条件下,一次污染物积累并二次转化,第二阶段残留沙尘中的矿物质对硫酸盐起到催化作用,导致ρ(PM2.5)快速上升,"2+26"城市大部分达日均重度及以上污染;第四阶段(12月3-4日)与第二阶段类似,PM2.5/PM10突降至0.2,"2+26"城市再次受到沙尘天气和区域传输的共同影响,因冷空气持续时间较长,污染被有效清除.研究显示,此次污染过程是气象条件、污染物一次排放和二次转化、区域传输、沙尘天气等多因素综合作用的结果.当静稳、高湿等不利气象条件或沙尘天气出现时,区域应加强对各类污染物排放的管控力度,以降低污染物的一次排放、二次转化以及沙尘和区域传输的共同影响,进而削弱污染严重程度.   相似文献   

10.
为了探究边界层气象要素时空分布及其变化对银川市冬季持续污染天气过程污染物质量浓度变化的影响机制,利用2016年12月1日-2017年1月31日逐时空气质量以及地面和逐日定时探空气象观测数据,根据大气污染级别和过程持续时间,选取2016年12月9-21日(简称"1211过程")和2016年12月29日-2017年1月9日(简称"1231过程")为研究对象,采用统计和天气诊断相结合的方法,在分析比较银川市冬季两次典型持续污染过程演变特征及其与地面气象要素关系的基础上,探讨了大气环流、边界层要素变化对银川市冬季典型污染过程的可能影响机制.结果表明:①银川市冬季两次大气污染过程持续阶段,地面均以偏东或偏南风为主,风速较小,相对湿度较大,能见度较低;在污染清除阶段,地面风向转为西北或偏北风,风速较大,相对湿度较小,能见度较高.②当冬季欧亚大陆中纬度区域500 hPa高空盛行纬向气流,850 hPa高度上银川市受反气旋环流和暖温度脊控制,并且有弱暖平流从西南部向北输送时,银川市易出现静稳型持续污染天气.③冬季银川市持续大气污染过程中,ρ(PM2.5)与风速呈负相关(R平均值为-0.326),与相对湿度呈正相关(R平均值为0.688),与能见度呈显著负相关(R平均值为-0.905),与边界层高度呈较显著负相关(R平均值为-0.575).④银川市冬季静稳型持续污染天气主要分为弱西北和平直西风气流型两种,弱西北气流型具有近地面层逆温弱,污染物积累慢,清除快的特征;平直西风气流型具有近地面层逆温强,污染物积累快,清除慢的特征.研究显示,冬季银川市上空500 hPa高度盛行纬向气流,地面主导风向为偏东或偏南风时,随着地面相对湿度增大、近地层风速减小、大气垂直上升运动减弱、边界层高度降低,大气中ρ(PM2.5)将迅速升高,银川市易出现以PM2.5为首要污染物的静稳型持续污染天气.   相似文献   

11.
2011年10月珠江三角洲一次区域性空气污染过程特征分析   总被引:3,自引:1,他引:2  
2011年10月18—25日珠江三角洲地区出现了一次区域性空气污染过程,重污染区域集中在西部,后期向中部转移,PM10为首要污染物.针对本次空气污染过程的研究发现,此次珠江三角洲地区空气污染过程主要受大尺度冷高压活动的影响,一直为下沉气流所控制,500 m以下近地层风速很小,边界层高度较低,存在贴地逆温层,非常不利于污染物的输送和扩散.PM10浓度与风速、能见度呈显著的负相关关系,与温度相关性不显著;且与风速和温度的相关性存在滞后性.稳定天气形势、大范围下沉气流、近地层静小风和贴地逆温是导致这次区域性空气污染过程的气象原因,PM10浓度增加导致珠江三角洲能见度下降.  相似文献   

12.
河南省冬季3次重污染过程的数值模拟及输送特征分析   总被引:1,自引:0,他引:1  
利用WRF-Chem模式模拟2015年11月27日—12月1日、12月5—14日、12月19—25日河南3次重污染过程,结合空气污染资料和ERA-Interim再分析资料,对比分析了这3次重污染过程的开始、持续和结束及污染物的输送特征.结果表明,静稳天气有利于污染的发展持续,3次重污染过程的结束均是由西路冷空气入侵造成的.第1次重污染过程平均风场上的风速均为小风或静风,从湖北到河南南部风向为偏南风;而第2和第3次重污染过程平均风场分别以偏东和偏北风为主.第2和第3次重污染过程中均存在明显的由北向南的污染物输送过程.3次重污染过程中,河南省本地排放对本省PM_(2.5)浓度的平均贡献率最大,而河南省周边区域对河南PM_(2.5)浓度的平均贡献率在这3次过程中不一样,第1次重污染过程,河南南部主要受偏南风影响,湖北对河南PM_(2.5)浓度的平均贡献率最大,为20.7%;第2和第3次重污染过程主要受偏东风影响,安徽和江苏对河南PM_(2.5)浓度的平均贡献率最大,分别为17.7%和18.5%.3次重污染过程中,安阳的主要污染输送源均不相同,分别来自河北、江苏和安徽、本省.  相似文献   

13.
鲜有出现空气质量问题的北方沿海城市青岛近年来也频频出现重污染天气. 2014年1月青岛市总计出现7 d重污染天气,其中1月15-18日是持续4 d的PM2.5重污染,其余的则分别出现在1月6日、11日和30日.为了获得气象条件对持续重污染天气发展、维持和消除的影响机制,利用激光雷达、大气稳定度仪探测数据以及地面、高空气象观测和空气质量监测数据,重点分析了1月15-18日持续重污染期间青岛市大气边界层气象要素的时间和空间特征.结果表明,2014年1月影响青岛冷空气势力弱、青岛近地面低于3 m/s的风速不利于污染物扩散,66%以上的相对湿度有利于污染物浓度增大.在污染源稳定的背景下,气象要素的差异性导致了污染物浓度时空分布的差异.在持续的弱偏北风下污染物浓度居高不下;在偏南风影响下,污染物浓度趋于下降.边界层内存在高层干冷弱北风和低层暖湿弱南风的风切变、稳定层结、低层相对湿度为70%的高湿大气以及交替出现的近地面南北风是此次重污染持续的主要原因.大气边界层高度变化对污染物浓度具有6 h左右的延迟影响;而低边界层高度、大稳定度因子,低云的存在和较高的污染物浓度之间具有较好的一致性变化趋势.当近地面温度升高、相对湿度减小以及增大的偏南风和存在弱不稳定层结时,有利于提高青岛局地大气扩散能力.   相似文献   

14.
冷空气过程对江苏持续性霾的影响研究   总被引:1,自引:0,他引:1  
利用地面气象观测资料、PM_(2.5)浓度监测资料和数值模式产品对2016年12月14—24日江苏遭遇的一次长时间霾天气过程进行分析.研究结果表明:过程期间有两次冷空气南下影响江苏省,两次冷空气均带来大风和降水,有效地清除了前期污染物,但随后全省PM_(2.5)浓度开始升高.第一次冷空气强度强于第二次,造成的污染也较重.WRF-Chem模式对本次过程的气象场和PM_(2.5)浓度模拟均较好,模拟观测相关系数分别达到0.52~0.99和0.40.模式能够较好地模拟出污染物的输送过程和时空分布.与第二次冷空气过程相比,第一次冷空气过程存在明显的污染物自北向南输送过程,100~500 m高空持续偏北气流(第2次过程为西北-偏西气流),期间全省平均边界层高度(PBLH)只有260 m(低于第2次过程的500 m),不利于污染物垂直扩散,造成地面浓度较高.利用HYSPLIT-4模式追踪了两次过程中淮安、泰州、无锡三站上空100 m处大气48 h后向轨迹,发现第一次过程中污染物来自山东中西部,第二次来自西部内陆地区.  相似文献   

15.
选取2019年1月江西省两次大气污染过程为研究对象,利用常规气象观测资料、美国国家环境预报中心(NCEP)再分析资料、全球资料同化系统(GDAS)气象数据和空气质量数据,分别从局地气象要素变化、地面天气形势、大气动力和热力条件及污染潜在源区等进行分析,对比两次污染过程形成机制.两次污染过程地面天气形势分别为冷锋前部型和低压倒槽型.冷锋前部型污染形成主要原因为冷空气南下在江西省减弱辐合导致上游细颗粒物输送并堆积,西北风增大细颗粒物浓度降低.低压倒槽型污染形成原因为较长时间处于高湿、小风或静风、逆温下的污染累积.对两次过程中污染较为严重的九江市进行分析,冷锋前部型九江市近地面主要受西风影响,低压倒槽型主要受东北风影响,低压倒槽型九江市风速多在2 m·s-1以下.两次污染期间大于3 m·s-1的风速有利于污染物清除.长时间高湿、小风(< 2 m·s-1)及风场辐合,是低压倒槽型九江市重污染维持较长时间的重要原因.低压倒槽型大气垂直结构较冷锋前部型稳定.低压倒槽型垂直湍流弱、低层风速小于2 m·s-1,且存在多层逆温和深厚的湿区,冷锋前部型存在明显下沉运动,逆温强度明显弱于低压倒槽.九江市PM2.5污染潜在贡献源主要来自河南东部、山东西部和安徽西北部;低压倒槽型九江市潜在源区主要位于江西省内及与江西省接壤的湖北东南部、安徽西南部.  相似文献   

16.
为了弄清冬季山谷风、海陆风对京津冀地区大气污染时空分布的影响,利用2016年12月地面加密自动气象站逐时观测数据和中国环境监测总站发布的逐时PM_(2.5)浓度数据,计算平均风矢量场和平均PM_(2.5)浓度场,分析山谷风、海陆风变化规律及其对PM_(2.5)浓度分布的影响.结果表明,在山谷风日,中午至下午谷风将位于河北太行山东部地区的污染物向北输送.傍晚以后,在北京西部、北部,以及河北太行山山前出现的山风与偏南风构成"人字形"辐合线,辐合线的汇聚作用使北京地区、廊坊,以及保定、石家庄、邢台等地大气污染加重.在海陆风日,下午至前半夜,河北中东部沿海地区出现东南向海风,深入内陆到达天津东南部地区,海风前缘区域大气污染加重;通过对中国科学院大气物理研究所铁塔0~325 m风向风速与PM_(2.5)浓度时间变化关系分析,以及利用Cressman法插值得到的地面风向风速和PM_(2.5)浓度二维格点场,分析北京地区重霾污染过程中近地层山谷风和海陆风对大气污染形成的影响:中午至下午,谷风将大气污染物向北京输送.傍晚以后,大气污染物在山风与偏南风形成的辐合线附近汇聚,在北京地区及以南地区形成PM_(2.5)高污染区.凌晨至早晨北京被山风控制,大气污染物被吹离北京、滞留在北京以南至天津西北地区.冬季,山谷风的输送和汇聚作用使大气污染物以日为周期不断循环和累积,对北京地区至北京以南地区、河北太行山东部地区的大气重污染形成起重要作用.  相似文献   

17.
我国区域性复合型大气污染日益严重,以燃煤火电为代表的煤炭消费相关产业已经成为最为重要的大气污染源,并已成为制约燃煤火电行业发展的重要因素. 应用RAMS(区域大气模式系统)-CMAQ(多尺度空气质量模式系统)模拟和评估全国燃煤火电对区域大气环境的影响,并分析了近地面风场对燃煤火电布局的影响;基于煤炭消费总量增长趋势与控制目标,预测燃煤火电的发展规模,提出全国燃煤火电分区布局策略. 结果表明:燃煤电厂对我国东部地区NOx、SO2、PM2.5以及PM10排放通量的贡献较大,但燃煤电厂对ρ(SO2)、ρ(O3)、ρ(PM2.5)和ρ(PM10)年均值的贡献率较小,基本维持在10%以下,仅对ρ(NOx)年均值贡献达到了10%~20%;考虑到盛行风向对污染物传输的影响,需谨慎在京津冀西北方向、长三角周边以及珠三角以北方向的较近区域新建燃煤电厂或大型燃煤火电基地;按照既定的煤炭消费总量控制目标(42×108 t)估算,2020年新增燃煤电厂容量可以满足电力消费需求增量的70%,“十三五”期间仍需要进一步开发其他替代能源,煤炭消费总量控制对煤电发展的影响逐渐减弱;中东部地区可增加燃煤火电装机容量较小,华北平原、长三角、珠三角和四川盆地等地区应禁止新建煤电机组,新疆维吾尔自治区、内蒙古自治区西部、宁夏回族自治区、陕西省北部等西部地区将是未来燃煤火电发展空间最大的区域.   相似文献   

18.
以大气污染物协同控制与精准治理的需求为导向,开展湖北省荆州市大气污染物的来源分析.基于FLEXPART-WRF模式揭示了2008—2017年荆州市PM2.5周边源"影响域"的季节气候特征,估算了大气污染物区域传输和局地排放的相对贡献,确定出不同季节的大气污染物主要传输通道.结果表明,荆州地区PM2.5主要"影响域"为湖北、湖南、河南和安徽省.不同季节湖北省外源传输对荆州PM2.5"影响域"的贡献率分别为春季50.4%、夏季33.9%、秋季42.6%、冬季43.0%和年均45.1%.春季3条区域传输通道分别为北通道(沿南阳盆地-荆州)、东通道(沿长江航道-荆州)以及南通道(沿雪峰山-荆州);夏季主要为南通道;秋、冬季分别为北通道、东北通道(沿大别山低山丘陵-荆州)及东通道.针对荆州主要3类重污染天气型的典型个例"影响域"分析表明,高压静稳型PM2.5污染主要来源于本地排放,省内贡献率达87.8%;低压倒槽型PM2.5污染主要来源于偏南输送和本地累积,省内贡献率达55.0%;冷锋输送型PM2.5污染主要来源于北路区域传输,省外贡献率达77.2%.对于冬季重污染期间,建议重点围绕荆州本地与省内荆门、襄阳、孝感、天门、潜江、武汉、随州、宜昌及省外常德、南阳、信阳等地开展协作,加强区域间大气污染联防联控.该项研究可为区域大气污染精细化管控与靶向治理提供科学依据.  相似文献   

19.
贾佳  丛怡  高清敏  王玲玲  杨静静  张国辉 《环境科学》2020,41(12):5256-5266
为揭示郑州市冬季空气污染过程及形成原因,选取郑纺机国控站点为采样点,探讨2019年12月郑州大气污染物浓度和主要气象参数特征,对比不同污染阶段PM2.5水溶性离子、元素和碳质组分浓度变化,并利用空气质量模型模拟结果,分析采样期间污染源排放与区域传输对采样点PM2.5质量浓度的贡献.结果表明,采样期间第一次和第二次重污染形成和消散过程略有差异,分别呈现出"缓慢累积、缓慢清除"和"缓慢积累、快速清除"的特征.第一次和第二次重污染时段NO3-、SO42-和NH4+质量浓度占PM2.5比值达到41.5%和46.2%,OC/EC比值分别为4.0和4.5,二次气溶胶颗粒的大量生成是两次重污染形成的主要原因.采样期间本地、东部、南部、西部和北部区域对采样点PM2.5浓度贡献占比均值分别为58.0%、2.4%、6.7%、6.9%和12.7%,第一次重污染是本地污染物排放和外来源区域传输...  相似文献   

20.
2015年3月17日18:00~23:00北京地区的PM_(2.5)质量浓度快速下降,在此期间并未出现与冷空气活动相伴的强偏北风.本研究分析了导致空气质量迅速改善的原因,结果表明边界层急流起着关键的作用.随着边界层内偏南风速增大,大气的通风量增大,污染物浓度降低.急流发展也加大了边界层内水平风的垂直切变,从而导致湍流增强和混合层增厚.此外,3月17日20:00在混合层顶附近出现气旋性地转涡度,Ekman抽吸的方向为垂直向上,于是底层的污染物就被带到高空并随强劲的西南风输送到下游.边界层急流的发展与惯性振荡和大气的斜压性有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号