首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
2013年1月北京市PM2.5区域来源解析   总被引:9,自引:11,他引:9       下载免费PDF全文
李璇  聂滕  齐珺  周震  孙雪松 《环境科学》2015,36(4):1148-1153
2013年1月,北京地区经历了多次严重的灰霾天气,细颗粒物污染已成为北京地区所面临的重要问题.了解和掌握北京细颗粒物的污染来源,是解决细颗粒物污染的重要途径,也是制定防治政策的重要依据.通过建立三维空气质量模型系统,对2013年1月20~24日的污染过程进行模拟,并运用PSAT技术探究北京市细颗粒物污染的区域来源.结果表明,本地源排放是北京市PM2.5的主要来源,平均贡献率为34%;河北和天津的平均贡献率分别为26%和4%;京津冀周边地区及模拟边界外的贡献分别为12%和24%.在重污染日,区域传输对北京市PM2.5的影响显著增强,是北京PM2.5污染的主要来源.PM2.5中的硝酸盐主要来自北京市周边地区的贡献,而硫酸盐和二次有机气溶胶呈现远距离传输的特性,铵盐和其他组分则主要来自北京本地的贡献.  相似文献   

2.
为了研究焦作市大气中PM2.5和PM10污染状况,基于2018—2020年焦作市50个环境空气质量监测站点的PM2.5和PM10浓度逐时观测资料,结合气象资料,分析了焦作市PM2.5和PM10浓度的时空分布特征及气象因素影响。结果表明:1)焦作市PM2.5和PM10呈双峰型日变化,且具有显著的U形逐月变化规律及冬高夏低、春秋居中的季节性特征。2)2018—2020年PM2.5和PM10浓度年均值呈西南高东北低的空间差异性特征。与2018年相比,2020年修武县PM2.5和PM10浓度的下降幅度最大,分别为30.25%、22.72%。3) Spearman相关性分析表明,PM2.5和PM10浓度与气温、风速呈显著负相关;与气压呈显著正相关;相对湿度与PM2.5浓度呈显著正相关,与PM10浓度呈显著负相关。焦作市环保局监测站在东北风、西南风风向PM2.5和PM10浓度污染较重,博爱县清化镇、沁阳市西万镇和武陟县乔庙乡监测站在西南风风向易出现高浓度颗粒物。该研究结果可为日后工业地区大气污染防治,生产生活的合理规划与布局提供重要参考。  相似文献   

3.
张忠地  邵天杰  黄小刚  卫佩茹 《环境工程》2020,38(2):99-106+134
京津冀及周边地区大气污染问题突出,秋、冬季重污染天气频发。为探讨该地区PM2.5污染来源,分析其污染状况和气象因素的关系,利用2017年京津冀地区空气质量监测站的气象资料如气压、风速、相对湿度、温度、降水量等,结合Arc GIS软件空间插值法、SPSS 21. 0的Pearson相关性分析等方法,采用拉格朗日混合型的扩散模型HYSPLIT后向轨迹聚类分析方法,探讨北京地区主要气团传输轨迹,结合GDAS气象资料计算潜在源贡献因子。结果表明:1) 2017年京津冀地区ρ(PM2.5)年均为64. 4μg/m3,比2016年下降11. 5%,全年达标天数占比为74. 2%。2)京津冀地区PM2.5与气压、相对湿度呈正相关,其中气压与PM2.5相关性最高;与风速、日照时长、温度、降水量呈负相关,其中日照时长与PM2.5相关性最高。冬季比其他季节影响更为显著。3)从时间尺度看,冬季污染最严重,秋、春季稍好,夏季PM2.5优、良级占92. 4%;...  相似文献   

4.
乌鲁木齐市是“丝绸之路经济带”关键节点城市,为了解乌鲁木齐市2015—2018年空气污染状况,利用2015年1月1日—2018年12月23日乌鲁木齐市7个国控空气质量监测站的ρ(PM2.5)、ρ(PM10)监测数据,基于ArcGIS空间分析平台,分析乌鲁木齐市PM2.5、PM10的时空分布特征.结果表明:ρ(PM2.5)从2015年(66.60 μg/m3)到2016年(76.93 μg/m3)呈上升趋势,在2016—2018年呈单一下降趋势;ρ(PM10)从2015年(132.74 μg/m3)到2016年(125.93 μg/m3)呈下降趋势,在2016—2018年呈单一上升趋势.2015—2018年工业活动集中的乌鲁木齐市边缘各区的ρ(PM2.5)、ρ(PM10)平均值比城市中心(商业区、居民区)分别高11.28、7.17 μg/m3,说明工业集中地区的大气环境质量受污染影响明显.此外,2015—2018年乌鲁木齐市大气污染呈季节性和北高南低的区域性分布特征.气象因子分析表明,ρ(PM2.5)、ρ(PM10)均与相对湿度呈正相关,与降雨量、风速等气象因素呈负相关.2015—2018年,乌鲁木齐市大气中ρ(PM2.5)/ρ(PM10)呈先增后降的趋势,冬季以PM2.5污染为主,其他季节以PM10污染为主.研究显示,2015—2018年乌鲁木齐市空气污染状况变化与地形、气象条件、城市化建设均有一定的关系.   相似文献   

5.
利用2018~2020年北京市33个环境评价站和5个区域评价站的空气质量数据,以及气象数据和北京市城区PM2.5组分数据,研究了3年间北京PM2.5的浓度演变、时空变化和重污染发生情况,并对PM2.5组分和气象条件变化进行比较分析.结果发现,3年间北京市ρ(PM2.5)分别为51、42和38μg·m-3,2020年的PM2.5相比2017年下降30.9%,但仍超过国际标准8.6%;北京市PM2.5空间分布依旧维持南高北低的特征,但南北差异逐年减小,区域浓度趋于均一化;1~3月PM2.5浓度相对较高,8~9月PM2.5浓度相对较低,采暖季各污染物浓度均显著高于非采暖季,NOx和CO分别偏高58.4%和52.9%,PM2.5偏高27.5%;采暖季和非采暖季PM2.5日变化出现反向特征,采暖季夜间PM2.5明显...  相似文献   

6.
为分析APEC会议前后北京地区PM2.5变化特征,利用中国科学院大学雁栖湖校区超级站在2014年10—12月的连续观测数据,对APEC会议前后北京地区污染物分布及变化特征、气象影响因素和气团传输路径特征进行了分析. 结果表明:APEC会议期间北京地区减排效果显著,ρ(PM2.5)平均值比会前下降了60.5%. 气象条件对污染物扩散起到积极作用,APEC期间平均风速为1.40 m/s,平均相对湿度为31.9 %,近地面气象条件优于APEC会前、会后. 北京地区受到外来污染物输送的影响,在2.00~3.00 m/s的南风下易发生来自南部地区的PM2.5和SO2输送. APEC会议期间北京地区主要受来自西北地区的高速、高海拔气团控制,其出现频率为39.6%,远低于APEC会前 (15.9%)和会后(20.8%),而来自南部地区的低速、低海拔污染气团的出现频率仅为2.1%,扩散条件总体良好. 研究显示,除了减排措施有效削减了污染物排放以外,有利的气象条件也是APEC会议期间北京地区保持良好空气质量的重要因素.   相似文献   

7.
2007—2014年北京地区PM2.5质量浓度变化特征   总被引:1,自引:0,他引:1  
为更好地解析北京地区ρ(PM2.5)的长期变化特征及气流轨迹聚类分析结果,对2007年8月—2014年7月在中国环境科学研究院实测的ρ(PM2.5)数据进行了统计分析,分析其年际、季节和月际变化特征;通过计算PM2.5的AQI分指数,分析了污染等级的时间变化特征;结合后向气流轨迹,对ρ(PM2.5)年际、季节变化与气团来源的关系进行了分析.结果表明:北京地区2008—2013年ρ(PM2.5)年均值分别为111.5、95.8、94.8、80.5、75.2、81.3 μg/m3,整体呈逐年下降趋势,但污染水平依然较高;ρ(PM2.5)由高到低的季节次序为秋季、冬季、春季、夏季,平均值分别为111.6、94.8、77.2、70.5 μg/m3,PM2.5重污染时段主要出现在秋冬季节,并且冬季ρ(PM2.5)近年来逐渐呈上升趋势;ρ(PM2.5)月均值呈单峰型变化,11月最高(为125.3 μg/m3),7月最低(为76.4 μg/m3);轨迹聚类分析发现,途经山西省北部和河北省南部的气流轨迹中ρ(PM2.5)较高,而来自北方及西北方向的气团相对较清洁,ρ(PM2.5)较低.北京地区近些年实施的大气污染减排措施对于控制PM2.5污染取得了一定效果,但针对秋冬季节重污染过程的控制力度仍需要加强,同时也要注意区域污染传输对北京地区ρ(PM2.5)的影响.   相似文献   

8.
利用卡尔费休法可直接测定PM2.5水分含量,方法精密度及准确度均较好.将该方法应用于北京市城区站点2020年全年的PM2.5分析,结果显示PM2.5水分浓度年均值为(5.0±4.1)µg/m3,在PM2.5占比为(12.5±4.8)%,与PM2.5质量浓度呈显著相关.水分质量浓度与PM2.5的质量浓度月度及季节变化趋势基本一致.研究发现,随着空气污染加重,水分质量浓度及其在PM2.5占比均呈上升趋势,二者相关性明显增强.可见污染发生时,水分增加有利于颗粒物吸湿增长从而推高污染水平,对PM2.5的贡献同步增强.当沙尘污染发生时湿度处于同期较低水平,不利于细颗粒物的吸湿增长,水分质量浓度及其占比均处于较低水平. PM2.5水分与二次离子及有机物均有很好的相关性,说明水分为气态污染物提供非均相转化载体,促进硝酸盐、硫酸盐、有机物的进一步生成.PM2.5水分与地壳物质无相关性,证实地壳元素为一次源,不受水分影响.  相似文献   

9.
利用北京市2019~2021年的气象数据、PM2.5及组分浓度数据,结合常规污染物NO2浓度,分别对PM2.5及组分浓度、气象参数、NO2浓度和氮氧化率(NOR)大小的时空变化进行分析比较.结果表明:2019~2021年三年间北京市城区PM2.5浓度下降14%,但NO3-上升12%;各风向上,北京市城区PM2.5浓度大小顺序为:东北风>东风>西南风>东南风>南风>西风>北风>西北风,此外,二次无机盐组分最高浓度均出现在偏东风风向,有机物(OM)最高浓度出现在西南风;各风向年际变化上,2019~2021年,北京市PM2.5、各组分及NO2浓度在空间上均呈现高浓度“东移”特征,NO3-在东北风向上上升幅度最高,达65.7%;东北、东风及东南风风向上,相对湿度同步升高,NOR在东北、东风风向上同步升高,升高幅度达...  相似文献   

10.
利用膜采样、颗粒在线称重方法和维萨拉气象仪对2004和2006年秋季嘉兴大气中ρ(PM2.5)及气象因子进行了分析.结果表明:2004和2006年秋季ρ(PM2.5)分别为(84.7±62.4)和(89.0±61.5)  μg/m3;ρ(PM2.5)占ρ(PM10) 比例为42%~69%;ρ(PM2.5)日均值变化大(16.7~345.7 μg/m3),晴天ρ(PM2.5)约为阴雨天的2倍.ρ(PM2.5)日变化分析表明,晴天呈双峰双谷现象,晚高峰(16:00—20:00)ρ(PM2.5)大于早高峰(06:00—10:00),阴雨天日变化不明显.PM2.5与相对湿度无显著相关性,但在不同相对湿度下PM2.5与能见度呈显著的负指数关系.东北风和西北风是观测期内当地的主导风向,ρ(PM2.5)高值出现在西南风方向,重污染天气过程形成原因复杂.   相似文献   

11.
于2013年6月至2014年5月在贵阳市城区设置采样点,利用国产武汉天虹智能采样器连续一年采集大气颗粒物(PM2.5)样品共357个,采用HOBO U30气象仪同步记录气象数据。气象数据分析表明贵阳市春、秋和冬季均为东北风,夏季多南风且风速较大,全年以东北风为主。结合气象数据分析了贵阳市市区PM2.5污染特征并初步讨论其来源。结果表明:PM2.5日浓度范围为4~193μg/m3,平均值为70±33μg/m3,日超标率为46%。以季节来看,夏季PM2.5浓度最低,冬季最高,秋、春季次之。PM2.5主要来源于工业排放与燃煤污染。与国内其它城市研究相比,处于轻度污染水平。  相似文献   

12.
  总被引:3,自引:3,他引:3  
The recent year‘s monitor results of Beijing indicated that the pollution level of fine particles PM2.5 showed an increasing trend. To understand pollution characteristics of PM2.5 and its relationship with the meteorological conditions in Beijing, a one-year monitoring of PM2.5 mass concentration and correspondent meteorological parameters was performed in Beijing in 2001. The PM2.5 levels in Beijing were very high, the annual average PM2.5 concentration in 2001 was 7 times of the National Ambient Air Quality Standards proposed by US EPA. The major chemical compositions were organics, sulfate, crustals and nitrate. It was found that the mass concentrations of PM2.5 were influenced by meteorological conditions. The correlation between the mass concentrations of PM2.5 and the relative humidity was found. And the correlation became closer at higher relative humidity. And the mass concentrations of PM2.5 were negtive-correlated to wind speeds, but the correlation between the mass concentration of PM2.5 and wind speed was not good at stronger wind.  相似文献   

13.
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,不仅能够造成灰霾天气,而且会对人体健康造成重大危害。本文以广州市环境监测中心站2009年的监测数据为基础,对广州市区PM2.5的时间变化和原因进行了分析,结果表明广州市区的PM2.5冬季较高,夏季较低,最高浓度出现在10月,最低浓度出现在7月。PM2.5浓度日变化呈现出明显的双峰形;PM2.5浓度的时间变化特征与气象因素和污染源排放密切相关。  相似文献   

14.
重庆市大气颗粒物污染特征及影响因素分析   总被引:1,自引:1,他引:1  
杨显双  伍丽梅 《环境工程》2016,34(3):97-101
利用重庆市17个大气自动站实时发布的数据,对PM_(2.5)与PM_(10)污染特征、变化规律与气象因子的相关性进行了分析。结果表明:2013年PM_(2.5)和PM_(10)的年均值分别为70,106μg/m3,均超过国家Ⅱ级标准。月均值、季均值变化明显,总体均呈两头高中间低的"U"型分布。2013年PM_(2.5)占PM_(10)的比例较大,均值为65.8%,PM_(2.5)和PM_(10)的Pearson相关系数为0.974,在0.01的置信水平上(双侧)显著相关。PM_(2.5)、PM_(10)的浓度与气温、大气压极显著相关;PM_(2.5)、PM_(10)的浓度与降雨量、日照时数(时)显著相关。  相似文献   

15.
2012年灰霾试点监测结果表明,灰霾日天数有明显减少。细颗粒物(PM2.5)浓度限值增加,使仅因重庆城市地域和气候原因造成部分相对湿度较低,而实际环境空气质量较好的灰霾日排除在外,更客观评价灰霾日发生规律。结合气象条件和颗粒物质量浓度对比情况表明,局域气候条件的变化将促使PM2.5和PM1吸湿增长明显,一定程度上促使粗颗粒物PM10质量浓度增加,局域污染物传输扩散不利,能见度减低,灰霾现象频增。  相似文献   

16.
主要利用连云港市环境监测中心站的大气环境自动监测平台的监测数据,对PM2.5质量浓度的变化特征以及与气象要素的关系分析。结果表明,连云港市的PM2.5质量浓度的变化特征基本上有明显的夏季与非夏季两种季节性特征。在夏季,PM2.5污染程度较轻,而在非夏季,PM2.5污染程度较重;风速与PM2.5质量浓度变化曲线几乎是负相关的。当风速大的时候,利于污染物的扩散;而风速小的时候,容易使得污染物浓度变大;PM2.5质量浓度变化曲线与温度的关系几乎呈现的是正相关性。气温的变化不总是反映空气质量的好坏情况,而逆温却易使污染物浓度升高;PM2.5质量浓度变化曲线与相对湿度的关系呈现的是正相关性;PM2.5质量浓度变化曲线与气压的关系在总体是呈负相关的。  相似文献   

17.
李祥  彭玲  邵静  崔绍龙  田海峰 《环境工程》2016,34(8):110-113
细颗粒物PM2.5为首要污染物的空气污染严重影响了公众健康,对空气污染进行有效预报具有十分重要的意义。而目前常用的空气污染物浓度预报方法在短时事件和意外事件预测方面存在不足。利用小波多尺度分析方法改进ARMA预测模型,并将其应用于短时空气污染物浓度预测。改进模型通过小波分解方法将时间序列分解为一个近似序列和多个细节序列,分别采用ARMA模型进行预测,然后将各序列预测结果进行重构,得到最终预测结果。以天津市2014年PM2.5浓度数据为例,分别采用ARMA模型、支持向量回归(SVR)模型、人工神经网络(ANN)模型以及基于小波多尺度分解改进的SVR模型和基于小波多尺度分解改进的ARMA模型进行了对比分析。结果表明:1)小波多尺度分解能够显著提高SVR模型和ARMA模型预报精度;2)ARMA、SVR、ANN等传统模型在重污染情况下预报精度显著下降,而小波分解改进策略能够较好地解决这个问题;3)基于小波多尺度分解改进的ARMA模型预报精度较高,是城市污染物浓度预报的有效手段。  相似文献   

18.
运用Models-3/CMAQ模式系统,模拟分析了2014年11月3~11日APEC会议期间北京市PM_(2.5)污染的时空分布特征,并利用过程分析工具IPR研究了会期两次短时间污染过程(4日13:00~5日12:00和10日13:00~11日12:00)中各种大气物理化学过程对城区官园和郊区定陵两个代表性站点近地面PM_(2.5)生成的贡献.结果表明,CMAQ模型合理地再现了北京市PM_(2.5)的浓度水平和时间变化.北京地区4日和10日发生不利于污染物扩散的气象条件,导致PM_(2.5)小时浓度出现高值(分别为188,124μg/m~3),但受减排措施和冷高压的作用,PM_(2.5)高值维持时间较短.4日13:00~5日12:00,水平传输是官园和定陵站点PM_(2.5)的主要贡献者,贡献率分别为49.6%和90.9%.此次污染过程北京地区受南部污染传输影响较强.10日13:00~11日12:00,官园站点PM_(2.5)主要来自源排放在本地的积累(78.8%),定陵站点PM_(2.5)主要来自较弱的水平传输(93.9%).此次过程体现出更加明显的局地性污染特征.两次过程中,PM_(2.5)的主要去除途径均为垂直传输.  相似文献   

19.
北京市PM2.5对DNA的氧化性损伤规律分析   总被引:3,自引:0,他引:3       下载免费PDF全文
运用质粒DNA损伤评价法,在北京市2010年6月至2011年6月全年的大气PM2.5样品中,选取每月的2个样品(包括正常和雾霾天气),共24个样品进行实验,分析其氧化性损伤能力的变化规律及其与采样条件的相互关系.结果表明,北京市大气颗粒物全样的氧化性损伤能力等于或略大于相应的水溶组分,说明颗粒物氧化性损伤能力多来自于水溶组分,大气颗粒物对DNA损伤率呈现在50,100,150, 200mg/mL剂量水平下依次递增的规律,即随剂量的增加而增加;雾霾天气下DNA损伤率出现高值;4月和6月的DNA损伤率在全年中较高.其他月份正常天气条件下损伤率均较低,在200mg/mL剂量下损伤率基本低于50%;损伤率与环境平均温度和湿度呈正相关,与平均大气压强和日平均风速呈负相关,相关性大小顺序为:环境平均温度>平均大气压强>平均湿度>日平均风速.  相似文献   

20.
翟华  朱彬  赵雪婷  潘晨 《中国环境科学》2018,38(11):4001-4009
利用站点气象和PM2.5资料以及NCEP的全球再分析数据集研究了2015年12月17~28日长江三角洲地区一次重污染天气过程.结果表明:地面弱气压场是此次污染事件发生发展的主要天气背景,而冷空气带来的大风使PM2.5浓度迅速下降,有效清除了PM2.5.区域热力因子和动力因子分析发现,此次过程中大气中低层层结稳定、近地面逆温强,有利于PM2.5和水汽的累积,使其浓度水平升高;对于动力因子来说,较小的通风率和较低的边界层高度不利于污染物扩散,同样使PM2.5浓度上升.两者相比,热力因子对PM2.5浓度值的贡献比动力因子大.结合后向轨迹和排放源分布发现,此次污染过程中长江三角洲地区的PM2.5主要受来自其西北方向的大陆气团(占46%左右)的影响,这些气团途经高污染排放源并把污染物远距离传输至长江三角洲地区.最后利用PSCF和CWT对长江三角洲地区污染物的潜在来源进行了分析,发现PM2.5的来源主要集中在安徽、河南、山西、山东以及长江三角洲本地,说明此次过程中长江三角洲地区的污染物浓度受到远距离输送和局地过程的共同影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号