首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the soft tissue of Crassostrea iridescens and the associated surface sediments (bulk and bioavailable metal concentrations) from an area influenced by a sewage outfall in Mazatlán Bay (southeast Gulf of California), were determined by atomic absorption spectrophotometry. Significant spatial differences in metal concentrations in both the bulk and bioavailable forms in the sediments were identified. An enrichment of Cu, Ni, Pb and Zn in sites located on a south-north transect was detected indicating a dominant influence of the sewage outfall toward the north. C. iridescens accumulated more Zn, Cu, Ni, Fe, Cd; and less Mn, Cr and Pb than were bioavailable in the sediments, as measured using conventional extraction analysis. The degree of enrichment and the bioavailable metal concentrations in the sediments of the south portion of Mazatlán Bay is discussed. The potential ability of C. iridescens as a biomonitor of metallic pollutants is postulated.  相似文献   

2.
Trace element contamination of Norwegian Lake sediments   总被引:7,自引:0,他引:7  
Rognerud S  Fjeld E 《Ambio》2001,30(1):11-19
Concentrations of Sb, Hg, Bi, Cd, Mo, As, Co, Ni, Cr, Cu, V, Pb and Zn in surface and preindustrial sediments from 210 lakes in Norway were used for studying modern atmospheric depositions of these elements. Surface sediments had considerably higher concentrations of Sb, Hg, Bi, Cd, As, Pb than preindustrial sediments. The differences decreased with latitude and altitude. A multivariate analysis including the trace elements and the major constituents (organic matter, Si, Al, Fe and Mn) of surface sediments suggested the following relationships: Sb, Hg, Bi, As, and Pb formed a group with strong associations to organic matter. Ni, Cr and Cu formed a second group, weakly associated to the inorganic sediment fraction (Si and Al). Zn and Cd formed a third group with weak associations to organic matter. Co was associated to Mn, whereas Mo and V showed no important covariations with any other trace elements or major components.  相似文献   

3.
Trace metals in sediments of two estuarine lagoons from Puerto Rico   总被引:11,自引:0,他引:11  
Concentrations of As, Cd, Cu, Fe, Hg, Pb and Zn were evaluated in surface sediments of two estuaries from Puerto Rico, known as San José Lagoon (SJL) and Joyuda Lagoon. Significantly higher concentrations in microg/g dw of Cd (1.8 vs. 0.1), Cu (105 vs. 22), Hg (1.9 vs. 0.17), Pb (219 vs. 8), and Zn (531 vs. 52) were found in sediment samples from SJL when compared to Joyuda Lagoon. Average concentrations of Hg, Pb, and Zn in some sediment samples from SJL were above the effect range median (ERM) that predict toxic effects to aquatic organisms. Enrichments factors using Fe as a normalizer, and correlation matrices showed that metal pollution in SJL was the product of anthropogenic sources, while the metal content in Joyuda Lagoon was of natural origins. Sediment metal concentrations found in SJL were comparable to aquatic systems classified as contaminated from other regions of the world.  相似文献   

4.
Metal concentrations of the inshore greentail prawn, Metapenaeus bennettae, and surface sediments from locations within Sydney estuary and Port Hacking (Australia) were assessed for bioaccumulation and contamination. The current study aimed to assess metal concentrations in prawn tissue (tail muscle, exoskeleton, hepatopancreas and gills), relate whole body prawn tissue metal concentrations to sediment metal concentrations and animal size, as well as assess prawn consumption as a risk to human health. Metal concentrations were highest in sediment and prawns from contaminated locations (Iron Cove, Hen and Chicken Bay and Lane Cove) in Sydney estuary compared with the reference estuary (Port Hacking). Concentrations in sediments varied considerably between sites and between metals (As, Cd, Cr, Cu, Ni, Pb and Zn), and although concentrations exceeded Interim Sediment Quality Guideline-Low values, metals (As, Cd, Cr, Cu, Ni, Pb and Zn) were below Australian National Health and Medical Research Council human consumption guidelines in prawn tail muscle tissue. Metal concentrations in prawn tail muscle tissue were significantly different (p?≤?0.05) amongst locations for Pb, Zn and Cd, and metal concentrations were generally highest in gills tissue, followed by the hepatopancreas, exoskeleton and tail muscle. The exoskeleton contained the highest Sr concentration; the hepatopancreas contained the highest As, Cu and Mo concentrations; and the gills contained the highest Al, Cr, Fe and Pb concentrations. Concentrations of Pb, As and Sr were significantly different (p?≤?0.05) between size groups amongst locations.  相似文献   

5.
Metal (Cu, Zn, Pb, Cd, Ni, Co, and Fe) contamination in sediments from a tropical estuary (Ébrié Lagoon, Ivory Coast) was assessed using pollution indices, multivariate analyses and sediment quality guidelines (SQGs). The results demonstrate that increased input of the studied metals occurred over the past 6 years compared to that from 20 years ago, due to rapid population growth, along with the increase of industrial and agricultural activities in the vicinity of the estuary. Ébrié Lagoon was also found to be one of the most contaminated tropical coastal estuaries. Very high average total organic carbon (TOC) content was found (1.9–3.70%) with significant spatial variation as a result of the influence of anthropogenic activities. This study also found that TOC plays an important role in the distribution of Cu, Zn, Co, and Cd in the Ébrié Lagoon sediments. Moderate to high sediment contamination was observed for Cd and Cu, moderate contamination was observed for Zn and Pb, while low contamination was observed for Ni, Co, and Fe. Cluster analysis (CA) and principal component analysis (PCA) investigation revealed that Cu, Zn, Cd, and Co result mainly from anthropogenic sources while Pb, Ni, and Fe may be of natural origin. The pollution-loading index (PLI) indicated that all of the sites close to wastewater discharges were highly polluted. The sediments are likely to be an occasional threat to aquatic organisms due to Cu, Zn, Pb, Cd, and Ni contents, based on the SQGs approach.  相似文献   

6.
The sources and sinks of dissolved and particulate Pb, Cu and Zn were determined for the main basin of Puget Sound to understand the effect man has had on metal concentrations in both the water column and in the sediments. Municipal, industrial and atmospheric sources contributed about 66% of the total Pb added to the main basin of Puget Sound during the early 1980s. Advective inputs were the major sources of total Cu and Zn (approximately 40%) while riverine and erosional sources contributed about 30%. The discharge of the particle-bound trace metals from rivers minimized the influence of particulate anthropogenic sources, which constituted 50%, 23% and 18% of the total particulate Pb, Cu and Zn inputs, respectively. While advective transport was the major source of dissolved Cu and Zn (approximately 60% of all dissolved inputs), industrial, municipal and atmospheric inputs contributed about 85%, 30% and 38% of the dissolved Pb, Cu and Zn inputs, respectively. The sources of dissolved and particulate Cu and Zn were comparable with the sinks within the errors of the analyses indicating their quasi-conservative nature. Advection removed about 60% of the total Cu and Zn added to the main basin while 40% was deposited in the sediments of Puget Sound. Because of this quasi-conservative nature of Cu and Zn, anthropogenic inputs of Cu and Zn were dispersed from the system more than they were contained within main basin sediments. About 75% of the dissolved Pb discharged into the main basin of Puget Sound was lost from the dissolved phase and was balanced by a similar gain in the particulate phase. Because of this extensive scavenging and the effective retention of particles within the main basin, about 70% of the total Pb added to the main basin was retained within its sediments. These separate mass balances have utility in management decisions because they show the relative contributions from different sources and demonstrate whether the influences of dissolved and particulate inputs are reflected solely in the water column or the sediments, respectively.  相似文献   

7.
Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity.  相似文献   

8.
We investigated the occurrence of cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), Znic (Zn), iron (Fe), manganese (Mn), and magnesium (Mg) in sediments, as well as in related soils and aquatic plants in the Liangtan River, a typical secondary anabranch of the Yangtze River in the Three Gorges Reservoir Region (TGRR) of China. We found that sediments accumulated more metals than soils and aquatic plants. Concentrations of the nine metals in sediments and soils followed the same sequence, while their concentrations in aquatic plants followed a different sequence. Potential adverse effects of contaminated sediments on benthic fauna were evaluated, and the results showed that the toxic effect on benthic organisms followed the sequence Zn?>?Ni?>?Cr?>?Cu?>?Cd?>?Pb. The potential ecological risk index analysis indicated that Cd in sediments had considerable ecological risk, whereas Cr, Cu, Zn, Ni, and Pb had low ecological risk. The potential ecological risk index (RI) of the heavy metals in sediments of the Liangtan River was 174.9, indicating moderate ecological risk. The transfer factor trend of metals for aquatic plants showed that Cd and Ni had the most and least accumulation, respectively. For Cu, Cd, Mg, Pb, and Cr, a significant positive correlation of the metal concentrations was observed between sediments and soils, but no correlations (excluding Cr) were detected between sediments and aquatic plants. Our study indicated that anthropogenic input may be the primary source of metal contamination in the Liangtan River, and that Zn and Cd pollution in the Liangtan River should be further explored.  相似文献   

9.
Karadede H  Unlü E 《Chemosphere》2000,41(9):1371-1376
Concentrations of heavy metals (Cd, Co, Cu, Fe, Hg, Mn, Mo, Ni, Pb and Zn) were measured in the water, sediment and fish species (Acanthobrama marmid, Chalcalburnus mossulensis, Chondrostoma regium, Carasobarbus luteus, Capoetta trutta and Cyprinus carpio) from the Atatürk Dam Lake, Turkey. Among the heavy metals studied Cd, Co, Hg, Mo and Pb were not detected in water, sediments and fish samples, while Ni was undetectable levels in fish samples. Levels of Cu, Fe, Mn and Zn varied depending on different tissues. The results of this study indicated that a general absence of serious pollution in the dam lake is due to heavy metals, where as the concentrations of elements found could mainly be attributed to geological sources.  相似文献   

10.
Lee PK  Yu YH  Yun ST  Mayer B 《Chemosphere》2005,60(5):672-689
This study was undertaken to assess the anthropogenic impact on metal concentrations of urban roadside sediments (N = 633) in Seoul city, Korea and to estimate the potential mobility of selected metals (Zn, Cu, Pb, Cr, Ni, and Cd) using sequential extraction. Comparison of metal concentrations in roadside sediments with mean background values in sediments collected from first- or second-order streams in Korea shows that Zn, Cu and Pb are most affected by anthropogenic inputs. The 206Pb/207Pb ratios of roadside sediments (range = 1.1419-1.1681; mean 1.1576 +/- 0.0068) suggest that Pb is mainly derived from industrial sources rather than from leaded gasoline. A five-step sequential extraction of roadside sediments showed that Zn, Cd and to a lesser degree Ni occur predominantly in the carbonate bound fraction, while Pb is highest in the reducible fraction, Cu in the organic fraction, and Cr in the residual fraction. It was found that the concentrations in the readily available exchangeable fraction were generally low for most metals examined, except for Ni whose exchangeable fraction was appreciable (average 15.2%). Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Zn > Ni > Cd > Pb > Cu > Cr. As potential changes of redox state and pH may remobilize the metals bound to carbonates, reducible, and/or organic matter, and may release and flush them through drain networks into streams, careful monitoring of environmental conditions appears to be very important. With respect to ecotoxicity, it is apparent the Zn and Cu pollution is of particular concern in Seoul city.  相似文献   

11.
Heavy metal pollution in sediments of the Pasvik River drainage   总被引:15,自引:0,他引:15  
The purpose of this paper is to study the regional impacts of heavy metals (Ni, Cu, Co, Zn, Cd, Pb, Hg) on the watershed of the Pasvik River. On the basis of sediment investigations at 27 stations of the watershed, background concentrations of the heavy metals, vertical distribution of heavy metals in sediments, heavy metal concentrations in surface sediments, contamination degree, and risk index were determined. The atmospheric emissions of Ni, Cu, Co, Zn, Cd and Hg from the smelters and waste waters from tailing dams and mines of the Pechenganickel Company are likely to be the main sources of increasing concentrations observed in recent sediments of the lower river reaches. Lead showed a different pattern from the other heavy metals--increasing Pb concentrations in the upper sediment layers towards the Norwegian side.  相似文献   

12.
Concentrations of Pb, Cd, Cu, Ni, Fe, Zn, Mn, Ca, P, Mg and S were measured in tissues of mink (Mustela vision) and river otter (Lutra canadensis) from five areas of Ontario, Canada. Bone Pb levels in both species were lowest in animals from the collection site most remote from industrial activity and atmospheric deposition of pollutants. Mean liver and kidney Cd levels were also different between collection sites and may reflect natural and/or anthropogenic sources. Copper levels in liver, but not kidney, were elevated in mink and otter from the heavily Cu-contaminated Sudbury region. However, tissue levels did not reflect environmental loading of other metals, such as Fe, Ni and Zn, in the Sudbury area. This may be a function of effective homeostatic regulation in mammals, or low potential for biomagnification of these elements.  相似文献   

13.
Demirezen D  Aksoy A 《Chemosphere》2004,56(7):685-696
Concentrations of heavy metals (Cd, Pb, Cr, Ni, Zn and Cu) were measured in bottom sediments, water and Typha angustifolia and Potamogeton pectinatus in Sultan Marsh. Sultan Marsh is one of the largest and most important wetlands in Turkey, Middle East and Europe, embodying saline and fresh water ecosystems and providing a shelter for 426 bird species. The organs of T. angustifolia have a larger quantity of the measured elements than the P. pectinatus. Considerably higher contents of Cd were found rather than in helophytes (P. pectinatus) in submerged plant (= emergent, T. angustifolia) species. The percentage of Cd in plant tissues points to a certain degree of water pollution in Sultan Mash. Analyses of water, bottom sediments and plant samples indicated that the Marsh were polluted with Pb, Cd, and partly with Cu and Zn. All sampling sites in the study area basin are generally more or less polluted when compared with the control values. Strong positive correlation was found between concentrations of Pb in water and in plants. Ni and Pb were accumulated by plants at a higher rate from bottom sediments than from water. Leaves of T. angustifolia accumulated less heavy metal than the corresponding roots. There was a significant relationship between Cd concentration in samples of plants and water pH value. It has been found that the tissues of T. angustifolia accumulate more heavy metals than the tissues of P. pectinatus. Therefore, all plants can be used as a biological indicator while determining environmental pressures; however, T. angustifolia is proved more appropriate for such studies.  相似文献   

14.
Liu X  Zhao S  Sun L  Yin X  Xie Z  Honghao L  Wang Y 《Chemosphere》2006,65(4):707-715
Concentrations of P and trace metals Zn, Cu, Cd, Pb and Hg in the faeces, bones, eggshells and feathers of seabirds and in the plants, soils and sediments with and without seabird influence on Dongdao Island, South China Sea, were determined and analyzed. Among the seabird biomaterials, the levels of P, Zn, Cu and Cd are the highest in the droppings and several times those in other materials; the Hg concentration is the highest in the feathers; and the Pb content is comparable among these biomaterials. These marked differences indicate different intake-bioaccumulation-elimination pathways for different trace metals. The levels of P, Zn, Cu, Cd and Hg in the plant, soil and sediment samples with the influence of seabird droppings are significantly higher than those in the samples without, and they are significantly correlated with each other. Thus, P, Zn, Cu, Cd and Hg are very likely to have a common source-predominantly bird guano-and the faeces of red-footed booby is an important vector for the flux of nutrient phosphorus and trace metals Zn, Cu, Cd and Hg from marine to island ecosystems on Dongdao Island.  相似文献   

15.
天津市典型河网区沉积物中重金属分布及生态风险评价   总被引:3,自引:0,他引:3  
选择天津市典型河网区为研究对象,分析了沉积物中6种重金属(Cr、Cu、Mn、Ni、Pb和Zn)的分布特征,并采用富集系数法和潜在生态危害指数法分析了重金属的来源,进而评价了其生态风险。结果表明,表层沉积物中Cr、Cu、Mn、Ni、Pb和Zn的平均含量分别是58.18、23.52、524.60、22.93、25.24和49.51 mg/kg,其中Cr、Mn和Ni含量均低于天津市土壤背景值,而Cu、Pb和Zn含量在部分样点高于背景值;在垂直分布上,沉积物中Cr和Ni的含量相对稳定,而Cu、Mn、Pb和Zn的含量从底层到表层均先增加后降低。重金属富集系数(EF)分析显示,河网区表层沉积物中Cu和Zn在个别样点以及Pb在近一半样点存在人为输入过程(EF1.5),与接纳上游及区域的生活污水、农田退水有关,而Cr、Mn和Ni均来自自然源。重金属综合潜在生态危害指数(RI)评价表明,整个河网区表层沉积物为轻微生态危害水平,对区域的水环境质量不构成威胁。  相似文献   

16.
Phosphate refineries are point sources for atmospheric Cr, Cd, Zn and P. Concentrations of these and other elements were determined in the lichen Rhizoplaca melanophthalma (Ram.) Leuck. and Poelt in relation to distance and direction from phosphate refineries northwest of Pocatello, Idaho. Elemental concentrations in lichens collected were measured using a multi-element Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). Linear regression analysis revealed that concentrations of Cd, Cr, Zn, and P were negatively correlated with distance from the refineries. The concentrations of the elements Cd, Zn, Ca, Mn, B, and Pb were significantly different among four transects in different directions from the pollution source. Analysis of covariance indicated significant differences in concentrations of Cd, Cr, Zn, P, Cu, Ca, Mg, and K in lichens as a function of distance and direction from the pollution source. These results indicate that this lichen species may be used to determine deposition patterns of air pollutants in semi-arid environments.  相似文献   

17.
Concentrations of aluminium and minor metals (Mn, Ni, Cu, Zn, Sr, Cd, Ba, Pb) were measured in precipitation and surface water at two upland locations (Upper Duddon Valley, UDV; Great Dun Fell, GDF) in northern England for 1 year commencing April 1998. At both locations, the loads in bulk precipitation were at the lower ends of ranges reported for other rural and remote sites, for the period 1985-1995. The deposited metals were mostly in the dissolved form, and their concentrations tended to be greatest when rainfall volumes were low. The concentrations of Cu, Zn and Pb in deposition were correlated (r2 > or = 0.40) with concentrations of non-marine sulphate. Three streams, ranging in mean pH from 5.07 to 7.07, and with mean concentrations of dissolved organic carbon (DOC) < 1 mg l(-1). were monitored at UDV, and two pools (mean pH 4.89 and 6.83, mean DOC 22 and 15 mg l(-1)) at GDF. Aluminium and the minor metals were mainly in the dissolved form, and in the following ranges (means of 49-51 samples. microg l(-1)): Al 36-530. Mn 4.4-36, Ni 0.26-2.8, Cu 0.25-1.7, Zn 2.1-30, Cd 0.03-0.16, Ba 1.9-140, Pb 0.10-4.5. Concentrations were generally higher at GDF. Differences in metal concentrations between the two locations and between waters at each location, and temporal variations in individual waters, can be explained qualitatively in terms of sorption to solid-phase soil organic matter and mineral surfaces, complexation and transport by DOC, and chemical weathering. The UDV catchments are sinks for Pb and sources of Al, Mn, Sr, Cd and Ba. The GDF catchments are sources of Al, Mn, Ni, Zn, Sr, Cd and Ba. Other metals measured at the two locations are approximately in balance. Comparison of metal:silicon ratios in the surface waters with values for silicate rocks indicates enrichment of Ni and Cu, and substantial enrichment of Zn, Cd and Pb. These enrichments, together with high metal deposition in the past, make it likely that concentrations of the metals in the surface waters are governed by release from catchment pools of atmospherically-deposited metal. The catchments appear to be responding on a time scale of decades, possibly centuries, to changes in metal deposition. For the more acid waters at UDV, the calculated free-ion concentrations of Al are similar to published LC50 values for acute toxicity towards fish. The free-ion concentrations of Ni, Cu, Zn and Cd in all the surface waters are one-to-four orders of magnitude lower than reported LC50 values for fish.  相似文献   

18.
Chabukdhara M  Nema AK 《Chemosphere》2012,87(8):945-953
The aim of this study was to assess the level of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the surface sediments of the Hindon River, India that receives both treated and untreated municipal and industrial discharges generated in and around Ghaziabad, India. Mean metals concentrations (mg kg−1) were in the range of; Cu: 21.70-280.33, Cd: 0.29-6.29, Fe: 4151.75-17318.75, Zn: 22.22.50-288.29, Ni: 13.90-57.66, Mn: 49.55-516.97, Cr: 17.48-33.70 and Pb: 27.56-313.57 respectively. Chemometric analysis was applied to identify contribution sources by heavy metals while geochemical approaches (enrichment factor and geo-accumulation index) were exploited for the assessment of the enrichment and contamination level of heavy metals in the river sediments. Chemometric analysis suggested anthropic origin of Cu, Cd, Pb, Zn, and Ni while Fe showed lithogenic origin. Mn and Cr was associated and controlled by mixed origin. Geochemical approach confirms the anthropogenic influence of heavy metal pollution in the river sediments. The study suggests that a complementary approach that integrates chemometric analysis, sediment quality criteria, and geochemical investigation should be considered in order to provide a more accurate appraisal of the heavy metal pollution in river sediments. Consequently, it may serve to undertake and design effective strategies and remedial measures to prevent further deterioration of the river ecosystem in future.  相似文献   

19.
Metal concentrations (Cu, Ni, Zn, Cd, Cr, Hg, Pb and Mo) were analysed from the liver and kidneys of moles, Talpa europaea L. (Insectivora), trapped in southern Finland on both contaminated and rural areas. In rural areas the concentrations of Cd, Cu, Zn, Pb and Mo were lower in juveniles (individuals in their first summer), except for Zn in the liver, which was lower in adults. When the animals were divided into annual classes (0-6 years), Cd and Mo concentrations in the liver increased significantly with age, while concentrations of Cu, Zn and Cr tended to decrease. Female moles had higher Pb concentrations than males, especially adult females, which also had lower levels of Cu in the liver than adult males. Moles in the metropolitan area of Helsinki clearly differed from those in rural areas in that the concentrations of heavy metals in these moles were higher (especially for the most toxic metals: Cd, Pb and Hg), and their body weight was lower. The renal concentrations of Cd in most of the moles in Helsinki exceeded the threshold that has been shown to have a nephrotoxic effect in mammals. In one subsample from Helsinki, Pb and Zn concentrations in the mole liver decreased as the distance from the highway increased. Concentrations of Pb in earthworms and several heavy metals in soil also decreased similarly in the same area. Our data indicate that Pb accumulates in moles through their diet of earthworms.  相似文献   

20.
This paper presents results from a survey of the heavy metal distribution in sediments in the drainage basin and estuary of the Sado River (Portugal). In the drainage basin, heavy metals originate mostly from pyrite outcrop erosion and mining activities (Cd, Zn, Cu and locally Hg, Pg), and also from crust erosion (Sn, Ni, Ti, Zr). These sources are not correlated with the particulate organic carbon (POC) and so the metals are thought to be in inorganic forms in this area. Anthropogenic heavy metal sources (urban and industrial) are found in the lower estuary (Sn, Cd, Hg, Zn, Pb and Cu) along with high POC concentrations. In this zone, these metals are thought to be strongly adsorbed onto organic particles. Furthermore, organo-metallic species are likely to be present, as demonstrated in the case of Sn, since methyl- and butyl-tin species were detected in sediments from this area. This suggests the need for the detection of organo-metallic species to understand the heavy metal geochemical cycles. No long-term changes in metal concentrations are found in sediment cores, except in the middle estuary (Zn, Cu) due to the development of mining activities on an industrial scale in the 1860s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号