共查询到20条相似文献,搜索用时 15 毫秒
1.
针对某城市污水处理厂剩余污泥,从pH值、吸附时间、污泥投加量、温度、铬(VI)浓度等方面研究了剩余污泥吸附剂对含铬(VI)废水的生物吸附性能.研究结果表明:废水的pH值是影响剩余污泥吸附铬(VI)的重要因素,适宜pH值为1.0~2.0;吸附是一个快速过程,适宜吸附时间为30 min;在pH值为1.0,污泥投加量为8g/L,30℃吸附30min,对50mg/L铬(VI)废水的去除率可达99.65%;在20~60℃污泥吸附不受温度影响;用Langmuir和Freundlich等温吸附模型描述了污泥对铬(VI)的吸附结果;通过扫描电子显微傲能谱仪(SEM/EDS)分析,吸附前后污泥的形貌变化不明显,元素含量发生变化. 相似文献
2.
采用剩余污泥为阳极底物,六价铬为阴极电子受体,构建双室微生物燃料电池(MFC).MFC启动成功后,考察阳极室污泥初始浓度和阴极室六价铬初始浓度对MFC产电性能及六价铬还原速率的影响.较高的污泥浓度(8~12g/L)对六价铬的还原速率影响均较小,且去除率均可达99%以上.污泥浓度为10g/L的MFC具有较高的产电性能,内阻为108Ω,最大功率密度输出为3621mW/m3.阴极室较高的Cr(VI)初始浓度可维持较长时间的高输出电压,但对阳极污泥降解并无明显影响.XPS测试结果表明,阴极Cr(VI)的还原产物为Cr(III),因电场作用被吸附在电极片上,使得阴极溶液中的总铬浓度降低.研究表明,剩余污泥为底物的微生物燃料电池可以在产电的同时实现剩余污泥的资源化及电镀废水的无害化. 相似文献
3.
煤矸石中硫铁矿在处理含铬(Ⅵ)废水中的应用 总被引:6,自引:1,他引:6
在此用煤矸石中硫铁矿对含铬废 (Ⅵ )水处理进行了实验研究 ,确定了有关工艺参数 ,并进行了工业化应用实验 ,煤矸石中硫铁矿处理含铬废 (Ⅵ )水工艺简单、操作方便、成本低 ,具有较好的推广应用价值 ,实现了以废治废 ,开辟了煤矸石中硫铁矿资源化利用的新途径 相似文献
4.
5.
图1臭氧减量污泥实例流入下水曝气池参照系曝气池减量系→→沉淀池剩余污泥贮槽↑→排放水臭氧处理设备↓←↑↓↓↓格栅分配槽沉淀池→活性污泥法处理污水的根本途径就是把水中的有机物最终以污泥的形式从水中分离出去,从而达到净化的目的。然而,即使圆满地达到了这一步,也还未完成整个处理过程,接下去的污泥处理,依然是水处理过程中一个重要的环节,如处理不慎,极易引起二次污染甚而使整个系统运行变得毫无意义。目前,工程人员普遍面临两大问题:①污泥处理配套技术不完善,设备性能差,凝聚剂效果不显著、不稳定;②污泥处理运行… 相似文献
6.
7.
含铬(Ⅲ)电镀污泥的处理 总被引:1,自引:0,他引:1
电镀污泥中含有大量对人体有害的三价铬,堆积排放于自然界中,污染了地下水源,对人体、植物有莫大的害处.有人认为,三价铬化合物是一种蛋白质的凝聚剂,它对人体健康有很大的潜在危险.鉴于此,我们对电镀厂排放含Cr_2O_3污泥为试样进行实验.本文以电镀厂污泥为试样进行研究结果,表明把三价铬转化为零价铬,不但除掉了其中的三价铬,使废渣符合排放标准,而且取得了金属铬,变废为宝.利用这种方法来处理废渣、既简单、 相似文献
8.
9.
10.
11.
光化学法处理含铬(Ⅵ)含氰废水的研究 总被引:6,自引:0,他引:6
本文研究了影响半导体催化六价铬光致还原和氰根光致氧化的诸多因素.结果表明,催化剂(TiO_2、WO_3等)的活性不仅取决于本身的性质,还与制备方法有关,对这些催化剂表面作金属铂修饰能显著提高它们的催化活性,溶液的酸度以及溶液中三价铁离子和甲醇的存在均对六价铬光致还原有一定影响.加入少量过氧化氢能提高氰根的TiO_2催化光致氧化率,制作并试验了能连续有效地处理含铬(VI)含氰废水的光化学反应装置. 相似文献
12.
采用焦亚硫酸钠、亚硫酸钠、硫代硫酸钠、氯化亚铁及硫酸亚铁五种常见的还原剂对实验室产生的六价铬废水进行还原处理,研究不同还原剂在不同pH值条件下对六价铬废水的去除效果,从经济性、去除率等不同方面对不同还原剂处理六价铬废水的优劣进行综合分析。结果表明:焦亚硫酸钠在pH=2.5的条件下对六价铬去除率达到99.84%;亚硫酸钠和硫代硫酸钠在pH=2.0的条件下对六价铬的去除率分别达到99.06%和99.28%;硫酸亚铁和氯化亚铁在反应溶液pH为2~3的条件下去除效果相差不大,两者的去除率都接近100%。处理相同浓度的六价铬废水,不同还原剂处理成本不同,焦亚硫酸钠处理每吨浓度为100 mg/L的六价铬废水所需要的试剂费用为2.86元,亚硫酸钠、硫代硫酸钠、氯化亚铁及硫酸亚铁四种还原剂处理相同废水所需要的试剂费用分别为3.575,7.08,14.28,6.72元。综合处理率和经济性两方面因素考虑,焦亚硫酸钠为五种还原剂中最佳还原剂。 相似文献
13.
以厌氧发酵污泥为阳极底物、Cr(VI)为阴极电子受体构建双室微生物燃料电池(MFC),考察厌氧发酵污泥MFC系统处理含铬废水的性能及机理,并与原污泥MFC系统进行比较.发酵污泥MFC系统的开路电压为1.05V,最大功率密度为5722mW/m3,比原污泥MFC系统提高了57.8%.发酵污泥MFC系统的表观内阻为119.1Ω,比原污泥MFC系统降低了8.5%.发酵污泥MFC系统对Cr(VI)的去除符合一级动力学模型,速率常数为0.0514h-1,比原污泥MFC系统提高了36.7%.污泥经厌氧发酵后可溶性有机物浓度增加,产生了大量短链脂肪酸,它们是产电微生物易于摄取的阳极底物,因而提高了MFC系统的产电性能及Cr(VI)去除效果. 相似文献
14.
15.
《环境科学与技术》2016,(12)
以生物活性高的厌氧颗粒污泥为对象,研究了U(Ⅵ)初始浓度、pH值、颗粒污泥的投加量和SO42-浓度对颗粒污泥处理含U(Ⅵ)废水的效果。结果表明:当U(Ⅵ)初始浓度为9.6 mg/L,湿颗粒污泥投加量为2 g,温度25℃,pH值为6时,对U(Ⅵ)的去除率达98.7%。随着SO_4~(2-)浓度的增加,微生物活性增强,SO_4~(2-)浓度为8 mmol/L时,反应9 h,溶液中的U(Ⅵ)基本去除。通过环境扫描电镜(SEM)分析颗粒污泥微观结构,SEM表明处理含U(Ⅵ)废水后的颗粒污泥主要以1~3μm的球菌和短杆菌为主,处理较高浓度(9.6 mg/L)含U(Ⅵ)废水后,生物活性较高,细菌数量较多、表面较光滑、形态较匀称,形成团聚结构。能谱分析(EDS)表明颗粒污泥内存在铀。高通量测序技术分析颗粒污泥微生物结构显示存在较多耐铀菌种,所占比重接近20%,颗粒污泥显示出良好的耐铀性。 相似文献
16.
17.
18.
19.