Environmental Science and Pollution Research - Reliable and accurate prediction model capturing the changes in solar radiation is essential in the power generation and renewable carbon-free energy... 相似文献
This study is trying to explore the relationship between corporate social responsibility (CSR) disclosures and financial performances (FP) through mediating role of the employee productivity (EP). This study classifies the CSR performances into four contexts, for instance, environment social governance (ESG), environmental improvement activity scores of CSR, social welfare activity score, and governance structure improvement score. The banking performance is classified into three different aspects such as returns on assets (ROA), returns on equity (ROE), and nominal interest margin profit (NIMP). The study covers the data set start from 2008 to 2019 regarding thirty commercial banks of China. The study uses the linear, non-linear, and quadratic techniques to explore the association between CSR disclosures and banking performances. The linear model result shows that the governance score is significant influencing the banking performance. Moreover, the employee productivities are also positive significant affecting the baking performances. The non-linear results of model show that composite score of ESG with employee productivity has significant influence on financial performance.
Environmental Science and Pollution Research - Cypermethrin (CYP) is a toxic manmade chemical compound belonging to pyrethroid insecticides contaminating the environment. Plantago major (PM) has... 相似文献
Environmental Science and Pollution Research - This study examines the Environmental Kuznets Curve (EKC) hypothesis in the context of 12 members of the OPEC by utilizing data on both the aggregate... 相似文献
Nickel ferrite (NiFe2O4) nanoparticles are prepared through different routes (microwave, co-precipitation, and pyrolysis) and tested for water purification applications through adsorption removal of an acid red dye B as a model organic pollutant. The characterizations of the prepared samples were done using XRD, FT-IR, SEM, TEM, BET, UV-Vis absorbance, Raman spectrum, and vibrating sample magnetometer (VSM). All samples showed an inverse spinel crystal structure. The obtained results pointed out to the effect of the synthetic route on the morphology, particle size, optical, and magnetic properties of the prepared ferrites. Magnetic measurements showed super-paramagnetic behavior for all samples. The magnetic saturation (Ms) of the sample prepared by pyrolysis, was found to possess the highest saturation value, 34.8 emu/g. Adsorption experiments were performed under the change in several parameters, such as pH, adsorbent dosage, and initial dye concentration. A dye removal percentage of 99% was reached under the optimum state. The isothermal adsorption of the acid red dye was investigated using several models, in which the experimental data could be best described by the Freundlich model. Several kinetic and equilibrium models were inspected by linear regression analysis and showed best fitting for the adsorption data through pseudo-second-order model. The calculated thermodynamic parameters indicated that the adsorption of acid red dye onto all the ferrite samples is a spontaneous and endothermic physical adsorption process.
Water represents 71% of all earth area and about 97% of this water is salty water. So, only 3% of the overall world water quantity is freshwater. Human can benefit only from 1% of this water and the remaining 2% freeze at both poles of earth. Therefore, it is important to preserve the freshwater through increasing the plants consuming salty water. The future prosperity of feed resources in arid and semi-arid countries depends on economic use of alternative resources that have been marginalized for long periods of time, such as halophytic plants, which are one such potential future resource. Halophyte plants can grow in high salinity water and soil and to some extent during drought. The growth of these plants depends on the contact of the salted water with plant roots as in semi-desert saline water, mangrove swamps, marshes, and seashores. Halophyte plants need high levels of sodium chloride in the soil water for growth, and the soil water must also contain high levels of salts, as sodium hydroxide or magnesium sulfate. There are many uses for halophyte plants, including feed for animals, vegetables, drugs, sand dune stabilizers, wind shelter, soil cover, wetland cultivation, laundry detergents, and paper production. This paper will focus on the use of halophytes as a feed additive for animals. In spite of the good nutritional value of halophytes, some anti-nutritional factors as nitrates, nitrite complexes, tannins, glycosides, phenolic compounds, saponins, oxalates, and alkaloids may be present in some of them. The presence of such anti-nutritional agents makes halophytes unpalatable to animals, which tends to reduce feed intake and nutrient use. Therefore, the negative effects of these plants on animal performance are the only objection against using halophytes in animal feed diets. This review article highlights the beneficial impact of considering halophytes in animal feeding on saving freshwater and illustrates its nutritive value for livestock from different aspects. 相似文献
Environmental Science and Pollution Research - This paper aims to explore the impact of real interest rates (RIN), income, trade, foreign direct investment (FDI), and energy consumption on... 相似文献
Metal binding is an important function of humic acids (HAs) in soils, sediments and waters. At pH 2.0, Mn(II) and Co(NH3)6aq3+ bind tightly in one step labeled A to a solid humic acid NHA isolated from a New Hampshire soil. Two consecutive steps are observed for Hg(II) binding. All the binding isotherms fit the Langmuir model in the temperature range 10.0-50.0 degrees C. Stoichiometric site capacities indicate predominant binding by charge-neutralizing HA carboxylate groups for Mn(II) and the second step A of Hg(II) binding. The binding affinity order in step A is Co(NH3)(6)3+>Hg(II)>Mn(II). Metal binding enthalpy and entropy changes fit the linear correlation found previously for binding of other metal cations by solid HAs. Free energy buffering from cooperative enthalpy and entropy changes and lower enthalpies for metal-HA interactions in solution suggest that desolvation of the cations and HA binding sites as well as HA conformational changes to allow for inner-sphere complexation predominate metal binding by hydrated solid HAs. 相似文献
Environmental Science and Pollution Research - The evaluation of the toxicological effects of titanium dioxide nanoparticles (TiO2NPs) is increasingly important due to their growing occupational... 相似文献
The complex bio-geochemistry of soil allows pollutant to persist for a longer period of time which further decreased the fertility and natural composition of land. Nickel, an inorganic pollutant, coming from a wide range of industrial and manufacturing units possesses serious threat to soil degradation and crop productivity around the world. The present study was carried to evaluate the combined role of microwave irradiation (MR) and citric acid (CA) on the phytoextraction potential of Brassica napus L. under Ni stress. An initial seed germination test was conducted to select effective time scale of MR exposure. Highest seed germination was observed at exposure of 2.45 GHz frequency for 30 s. Healthy seeds of B. napus L. genotype Faisal Canola (RBN-03060) treated with MR at 2.45 GHz for 30 s were sown in plastic pots filled with 5 kg of soil. Nickel and CA applied exogenously in solution form with different combinations to both MR-treated and untreated B. napus plants. The MR-treated plants showed higher growth, biomass, photosynthetic pigments (Chl a, b, total, and carotenoids) and activities of antioxidant enzymes (SOD, POD, APX, CAT) as compared to untreated plants who showed higher reactive oxygen species (MDA, H2O2) and electrolyte leakage. Increasing Ni concentration significantly decreased the physiological and biochemical attributes of B. napus both in MR-treated and untreated plants. The addition of CA alleviated Ni-induced toxic effects in both MR-treated and untreated plants by improving antioxidant defense system. The degree of Ni stress mitigation was higher in MR-treated plants. The Ni concentration was higher in root, stem, and leaves of MR-treated plants under CA application as compared to untreated plants. The present study concluded that seeds treated with MR before sowing showed higher accumulation and concentration of Ni from soil, and this phenomenon boosted with the application of CA. 相似文献