首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6775篇
  免费   294篇
  国内免费   2501篇
安全科学   422篇
废物处理   459篇
环保管理   465篇
综合类   3847篇
基础理论   1104篇
环境理论   1篇
污染及防治   2467篇
评价与监测   248篇
社会与环境   273篇
灾害及防治   284篇
  2024年   3篇
  2023年   92篇
  2022年   278篇
  2021年   247篇
  2020年   197篇
  2019年   160篇
  2018年   211篇
  2017年   304篇
  2016年   284篇
  2015年   394篇
  2014年   465篇
  2013年   673篇
  2012年   571篇
  2011年   574篇
  2010年   443篇
  2009年   466篇
  2008年   494篇
  2007年   431篇
  2006年   366篇
  2005年   272篇
  2004年   210篇
  2003年   248篇
  2002年   245篇
  2001年   189篇
  2000年   215篇
  1999年   238篇
  1998年   219篇
  1997年   208篇
  1996年   201篇
  1995年   174篇
  1994年   132篇
  1993年   116篇
  1992年   82篇
  1991年   50篇
  1990年   29篇
  1989年   18篇
  1988年   23篇
  1987年   10篇
  1986年   7篇
  1985年   7篇
  1984年   5篇
  1983年   6篇
  1982年   10篇
  1981年   3篇
排序方式: 共有9570条查询结果,搜索用时 93 毫秒
1.
Zhu  Rong  Wang  Shixin  Srinivasakannan  C.  Li  Shiwei  Yin  Shaohua  Zhang  Libo  Jiang  Xiaobin  Zhou  Guoli  Zhang  Ning 《Environmental Chemistry Letters》2023,21(3):1611-1626
Environmental Chemistry Letters - The demand for lithium is growing rapidly with the increase in electric vehicles, batteries and electronic equipments. Lithium can be extracted from brines, yet...  相似文献   
2.
Huang  Ying  Jiang  Qiongji  Yu  Xubiao  Gan  Huihui  Zhu  Xia  Fan  Siyi  Su  Yan  Xu  Zhirui  He  Cunrui 《Environmental science and pollution research international》2021,28(37):51251-51264
Environmental Science and Pollution Research - Trace copper ion (Cu(II)) in water and wastewater can trigger peroxymonosulfate (PMS) activation to oxidize organic compounds, but it only works under...  相似文献   
3.
河口切变锋引起的滩槽泥沙交换效应   总被引:3,自引:1,他引:2  
切变锋是河口湾锋系中最为常见和最易观察到的锋面类型。本文对长江口的切变锋进行现场观察和滩,槽同步水文资料分析,简述了长江口切变锋发生的部分和基本特性,提出了切变锋引起的滩,槽泥沙呈现螺旋形交换形式等论点。  相似文献   
4.
分析简单地拉伸、压缩和扭转的情况时,应力状态能容易地被确定.但是,实际上在金属加工过程中材料是承受复杂的应力状态,在模具——工件接触面上增加有摩擦力.而且,这些应力和摩擦力一般地沿着接触面变化.准确的计算或预测载荷、力、应力和温度,不但对设计适宜的设备是重要的,而且对研究工艺期间材料的变化过程也是重要的.本文将讨论材料变形过程中所运用的主要分析方法及其优缺点.  相似文献   
5.
An active capping demonstration project in Washington, D.C., is testing the ability to place sequestering agents on contaminated sediments using conventional equipment and evaluating their subsequent effectiveness relative to conventional passive sand sediment caps. Selected active capping materials include: (1) AquaBlokTM, a clay material for permeability control; (2) apatite, a phosphate mineral for metals control; (3) coke, an organic sequestration agent; and (4) sand material for a control cap. All of the materials, except coke, were placed in 8,000‐ft test plots by a conventional clamshell method during March and April 2004. Coke was placed as a 1.25‐cm layer in a laminated mat due to concerns related to settling of the material. Postcap sampling and analysis were conducted during the first, sixth, and eighteenth months after placement. Although postcap sampling is expected to continue for at least an additional 24 months, this article summarizes the results of the demonstration project and postcap sampling efforts up to 18 months. Conventional clamshell placement was found to be effective for placing relatively thin (six‐inch) layers of active material. The viability of placing high‐value or difficult‐to‐place material in a controlled manner was successfully demonstrated with the laminated mat. Postcap monitoring indicates that all cap materials effectively isolated contaminants, but it is not yet possible to differentiate between conventional sand and active cap layer performance. Monitoring of the permeability control layer indicated effective reductions in groundwater seepage rates through the cap, but also showed the potential for gas accumulation and irregular release. All of the cap materials show deposition of new contaminated sediment onto the surface of the caps, illustrating the importance of source control in maintaining sediment quality. © 2006 Wiley Periodicals, Inc.  相似文献   
6.
7.
Carbon–silica materials with hierarchical pores consisting of micropores and mesopores were prepared by introducing nanocarbon microspheres derived from biomass sugar into silica gel channels in a hydrothermal environment.The physicochemical properties of the materials were characterized by nitrogen physical adsorption(BET),scanning electron microscopy(SEM),and thermogravimetric(TG),and the adsorption properties of various organic waste gases were investigated.The results showed that microporous carbon materials were introduced successfully into the silica gel channels,thus showing the high adsorption capacity of activated carbon in high humidity organic waste gas,and the high stability and mechanical strength of the silica gel.The dynamic adsorption behavior confirmed that the carbon–silica material had excellent adsorption capacity for different volatile organic compounds(VOCs).Furthermore,the carbon–silica material exhibited excellent desorption characteristics:adsorbed toluene was completely desorbed at 150℃,thereby showing superior regeneration characteristics.Both features were attributed to the formation of hierarchical pores.  相似文献   
8.
Granular acid-activated neutralized red mud (AaN-RM) has been successfully prepared with good chemical stability and physical strength. However, its potential for industrial application remains unknown. Therefore, the performance of granular AaN-RM for phosphate recovery in a fixed-bed column was investigated. The results demonstrated that the phosphate adsorption performance of granular AaN-RM in a fixed-bed column was affected by various operational parameters, such as the bed depth, flow rate, initial solution pH and initial phosphate concentration. With the optimal empty-bed contact time (EBCT) of 24.27 min, the number of processed bed volumes and the phosphate adsorption capacity reached 496.95 and 84.80 mg/g, respectively. Then, the saturated fixed-bed column could be effectively regenerated with a 0.5 mol/L HCl solution. The desorption efficiency remained as high as 83.45% with a low weight loss of 3.57% in the fifth regeneration cycle. In addition, breakthrough curve modelling showed that a 5-9-1 feed-forward artificial neural network (ANN) could be effectively applied for the optimization of the fixed-bed adsorption system; the coefficient of determination (R2) and the root mean square error (RMSE) evaluated on the validation-testing data were 0.9987 and 0.0183, respectively. Therefore, granular AaN-RM fixed-bed adsorption exhibits promising potential for phosphate removal and recovery from polluted water.  相似文献   
9.
Plants constitute a major element of constructed wetlands(CWs).In this study,a coupled system comprising an integrated vertical flow CW(IVCW) and a microbial fuel cell(MFC) for swine wastewater tre atment was developed to research the effects of macrophytes commonly employed in CWs,Canna indica,Acorus calamus,and Ipomoea aquatica,on decontamination and electricity production in the system.Because of the different root types and amounts of oxygen released by the roots,the rates of chemical oxygen demand(COD) and ammonium nitrogen(NH_4~+-N) removal from the swine wastewater differed as well.In the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,the COD removal rates were 80.20%,88.07%,84.70%,and 82.20%,respectively,and the NH_4~+-N removal rates were 49.96%,75.02%,70.25%,and 68.47%,respectively.The decontamination capability of the Canna indica system was better than those of the other systems.The average output voltages were 520±42,715±20,660±27,and 752±26 mV for the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,respectively,and the maximum power densities were 0.2230,0.4136,0.3614,and0.4964 W/m~3,respectively.Ipomoea aquatica had the largest effect on bioelectricity generation promotion.In addition,electrochemically active bacteria,Geobacter and Desulfuromonas,were detected in the anodic biofilm by high-throughput sequencing analysis,and Comamonas(Proteobacteria),which is widely found in MFCs,was also detected in the anodic biofilm.These results confirmed the important role of plants in IVCW-MFCs.  相似文献   
10.
Inhaled atmospheric fine particulate matter(PM_(2.5)) includes soluble and insoluble fractions,and each fraction can interact with cells and cause adverse effects.PM_(2.5) samples were collected in Jinan,China,and the soluble and insoluble fractions were separated.According to physiochemical characterization,the soluble fraction mainly contains watersoluble ions and organic acids,and the insoluble fraction mainly contains kaolinite,calcium carbonate and some organic carbon.The interaction between PM_(2.5) and model cell membranes was examined with a quartz crystal microbalance with dissipation(QCM-D) to quantify PM_(2.5) attachment on membranes and membrane disruption.The cytotoxicity of the total PM_(2.5) and the soluble and insoluble fractions,was investigated.Negatively charged PM_(2.5) can adhere to the positively charged membranes and disrupt them.PM_(2.5)also adheres to negatively charged membranes but does not cause membrane rupture.Therefore,electrostatic repulsion does not prevent PM_(2.5) attachment,but electrostatic attraction induces remarkable membrane rupture.The human lung epithelial cell line A549 was used for cytotoxicity assessment.The detected membrane leakage,cellular swelling and blebbing indicated a cell necrosis process.Moreover,the insoluble PM_(2.5) fraction caused a higher cell mortality and more serious cell membrane damage than the soluble fraction.The levels of reactive oxygen species(ROS) enhanced by the two fractions were not significantly different.The findings provide more information to better understand the mechanism of PM_(2.5) cytotoxicity and the effect of PM_(2.5) solubility on cytotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号