首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10168篇
  免费   1763篇
  国内免费   3933篇
安全科学   1673篇
废物处理   176篇
环保管理   951篇
综合类   8836篇
基础理论   1477篇
污染及防治   852篇
评价与监测   650篇
社会与环境   783篇
灾害及防治   466篇
  2024年   137篇
  2023年   387篇
  2022年   836篇
  2021年   820篇
  2020年   947篇
  2019年   651篇
  2018年   630篇
  2017年   739篇
  2016年   579篇
  2015年   714篇
  2014年   610篇
  2013年   795篇
  2012年   924篇
  2011年   916篇
  2010年   860篇
  2009年   821篇
  2008年   793篇
  2007年   807篇
  2006年   777篇
  2005年   570篇
  2004年   468篇
  2003年   277篇
  2002年   240篇
  2001年   212篇
  2000年   177篇
  1999年   81篇
  1998年   22篇
  1997年   13篇
  1996年   16篇
  1995年   8篇
  1994年   11篇
  1993年   3篇
  1992年   13篇
  1991年   2篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
论文利用ERA-Interim(0.5°×0.5°,简称ERA)、NCEP/NCAR2(2.5°×2.5°,简称NCEP2)两种不同分辨率的再分析资料和探空观测资料,首先分析了夏季(7月)和冬季(1月)青藏高原(以下简称高原)上大气水汽含量大值区(简称"湿池")的区域分布特征,然后基于ERA资料分析了1979—2012年间高原"湿池"的一些变化特征,发现了一些新的事实。主要结果包括:在对流层中上层,高原上无论夏、冬季都有大气水汽含量的高值中心——高原"湿池"存在。夏季7月高原"湿池"强度最强,ERA资料除了在高原南部有自西到东的连续高湿中心带外,在高原西北部还有一个高湿中心;NCEP2资料仅在高原东南部和西南部有两个高湿中心。冬季1月,两种资料均只在高原东南部有高湿中心。总体上,ERA资料与探空观测资料的高湿中心区更为接近。7月,高原南部高湿中心在1990年代中期(1994—1996年)之后持续偏强,西北部中心强度有弱—强—弱—强交替变化特征;1月,高湿中心在1980年代末期开始持续偏强。高原南部高湿中心带在7月几乎是一个连续的区域,1996年以后这一特征更为明显,在1月则是分为东西两段的高湿中心带。  相似文献   
72.
水源水库藻类功能群落演替特征及水质评价   总被引:2,自引:4,他引:2  
为了解水源水库的藻类功能群落时空演替特征及水质变化,以李家河水库为例, 2018年9月~2019年6月对藻类及水质因子开展连续监测,采用功能类群划分方法对水库藻类进行了识别与分类,探讨了藻类功能群落与水质间关系,并结合WQI指数法进行水质评价.结果表明,本研究共获得藻类56种,隶属于4门28属,可划分为15个功能群类,其中优势藻类功能群落分别为B、 D、 G、 J、 L0、Mp、 P、 W1和X1;李家河水库藻类结构呈现明显的季节性特征,混合期藻密度明显低于分层期,其中混合期的主要功能藻种为小球藻和小环藻,分层期的主要功能藻种为舟形藻和针杆藻.冗余分析(RDA)表明,水温、混合层深度和RWCS指数是驱动藻类演替的主要因子;WQI分析结果显示李家河水体水质为"良好",混合期水质略好于分层期.本研究指出扬水曝气系统可改变藻类功能群落的演替特征,有效改善水源水库水质,保障了饮水供水安全.  相似文献   
73.
74.
采用X射线光电子能谱(XPS)法研究了HTPB推进剂在80℃热空气烘箱内分别老化0周、13周和24周的元素组成、化学价态及含量变化。通过拟合C,O,N,Cl等元素的XPS谱图,推测该推进剂在常温(25℃)贮存老化初期应是氧化交联,后期则出现降解断链,并认为NH4ClO4缓慢分解,攻击C C不饱和双键,使得C C双键含量降低是HTPB推进剂老化失效的主要原因。Al粉被包裹在推进剂粘合剂内部,XPS法未能检出Al粉。由于Al粉比较稳定,不参与推进剂老化过程,故XPS仍可用于HTPB推进剂老化机理研究。  相似文献   
75.
夏季闽江CDOM的空间分布与降解特征   总被引:1,自引:2,他引:1  
程琼  庄婉娥  王辉  陈苇  杨丽阳 《环境科学》2019,40(1):157-163
利用三维荧光光谱-平行因子分析技术(EEMs-PARAFAC)以及微生物和光降解实验等方法,分析夏季闽江下游-河口区有色溶解有机质(CDOM)的组成、分布及其降解特征.结果表明,闽江下游-河口区CDOM存在三类荧光组分:类腐殖质、类酪氨酸和类色氨酸;类腐殖质是河段CDOM的主要荧光组分,在河口区随着盐度增加主要的荧光组分逐渐变为类蛋白质.CDOM的丰度变化呈现出明显的空间分布格局:河段CDOM的吸收系数a(280)较低,进入市区后有所增加,到了郊区呈现下降的趋势,而在河口区迅速下降;保守估计福州市区对闽江CDOM的贡献为8%.河段a(280)易被微生物降解和光降解,降解率分别为(28±8)%和(44±7)%,其生物可利用性和光化学活性远高于受海源CDOM影响的河口区;类腐殖质、类酪氨酸和类色氨酸荧光组分在河段具有较高的光化学活性,降解率分别为(75±0.5)%、(58±21)%和(73±3)%,但不易被微生物降解,而且在28 d微生物培养后出现类腐殖质的累积.  相似文献   
76.
水中氯仿的活性炭电增强吸附特性   总被引:13,自引:1,他引:13       下载免费PDF全文
讨论了活性炭在电场作用下对水中微量的三氯甲烷的吸附 ,测定不同控制电位下活性炭的吸附量 ,并讨论了吸附动力学与吸附等温方程 .实验结果表明 :活性炭的吸附量与活性炭上所加的控制电位相关 .在阳极极化时 ,活性炭的吸附量增大 ;在阴极极化时 ,活性炭吸附量减少 .吸附起始浓度为 10 0 μg L的氯仿溶液 ,同样数量的活性炭在阳极极化下可得到最大吸附量 ,其值为无电场时的 1 6倍 .分析了电场影响活性炭吸附的机理 .  相似文献   
77.
针对光化学污染的严峻形势,中国应尽快建立国家层面的光化学监测网络,完善光化学监测的技术体系与质量管理体系,为重点地区光化学污染防治工作提供监测数据支持。研究在总结美国光化学评估监测网络发展历程、运行及其监测目标、技术体系和质量管理体系的基础上,提出了明确光化学监测目标、制定优先监测VOCs名单、完善光化学监测技术体系和质量管理体系、建立光化学监测数据共享平台以及开展VOCs源解析等建设中国光化学监测网络的具体建议。  相似文献   
78.
采用聚合物前驱体法制备了未掺杂、掺杂Cu、掺杂Bi、掺杂Ni的4种Ti/Sn O2-Sb电极,运用SEM和XRD分析电极表面形貌及结构,通过线性极化扫描、循环伏安等测试考察其电化学性能,同时进行1,4二氯苯(p-DCB)降解实验进一步探究电极的电催化氧化特性.SEM和XRD结果表明,掺杂金属可改善电极表面形貌,增大其比表面积;电化学测试表明,Ti/Sn O2-Sb电极的析氧电位并未因金属掺杂而有明显改变,掺杂金属后,Ti/Sn O2-Sb电极具有更优的电催化活性和稳定性.p-DCB降解实验表明,改性Ti/Sn O2-Sb电极对p-DCB的降解效率明显提高,其中Ti/Sn O2-Sb-Cu电极的电催化处理效果最优,电解2 h后p-DCB的去除率即达到87.6%,且p-DCB的降解反应遵循一级反应动力学规律.  相似文献   
79.
多环芳烃在土壤-蔬菜界面上的迁移与积累特征   总被引:5,自引:4,他引:5  
尹春芹  蒋新  杨兴伦  王聪颖  卞永荣  王芳 《环境科学》2008,29(11):3240-3245
研究了南京市工业区周边污染农田土壤中16种优先控制的多环芳烃(PAHs)污染物由土壤向蔬菜迁移的特征及其在蔬菜体内的积累规律.结果表明,蔬菜体内PAHs的浓度与其生长土壤环境中PAHs的浓度呈正相关关系,且土壤中PAHs的浓度显著高于生长在该土壤上的蔬菜根和茎叶组织中的浓度(p<0.05),根中PAHs的浓度显著高于茎叶组织中的浓度(p<0.05).蔬菜根中低环PAHs与PAHs总浓度的比值(∑LMW-PAHs∑PAHs)显著高于其土壤中相应的比例(p<0.05).与高环PAHs(HMW-PAHs)相比,LMW-PAHs易被蔬菜根部吸收,表现出较高的生物有效性.生长在同种污染土壤中的4种叶菜类蔬菜体内PAHs的浓度差异不显著,即这4种蔬菜吸收积累PAHs的差异较小.  相似文献   
80.
目的研究不同海拔大气压力特别是高空条件对水平对置活塞汽油机热平衡性能的影响。方法利用内燃机高空模拟试验台进行不同海拔高度(0~7000 m)下水平对置活塞汽油机的热平衡试验,测得不同海拔下排温、缸体表面温度等特征参数,计算热流量分配特性,并对比分析热流量分配特性随海拔高度的变化规律。结果随海拔升高,汽油机排温和缸体表面温度逐渐下降,且海拔愈高,缸体表面温度下降幅度愈大。汽油机有效功率随海拔升高逐渐下降,余项损失百分比逐渐上升,且在低转速下,变化幅度增大。在6000 m模拟海拔、3000 r/min转速下,汽油机有效热效率不到5%,而余项损失达到了30%以上,此时部分汽油甚至并未燃烧。结论高空环境对水平对置汽油机热平衡性能造成严重影响,成为制约其高海拔性能恢复的关键因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号