首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1015篇
  免费   10篇
  国内免费   34篇
安全科学   50篇
废物处理   84篇
环保管理   93篇
综合类   89篇
基础理论   154篇
环境理论   1篇
污染及防治   382篇
评价与监测   144篇
社会与环境   52篇
灾害及防治   10篇
  2023年   27篇
  2022年   131篇
  2021年   101篇
  2020年   39篇
  2019年   44篇
  2018年   57篇
  2017年   65篇
  2016年   61篇
  2015年   26篇
  2014年   40篇
  2013年   125篇
  2012年   46篇
  2011年   56篇
  2010年   43篇
  2009年   28篇
  2008年   27篇
  2007年   27篇
  2006年   21篇
  2005年   11篇
  2004年   15篇
  2003年   9篇
  2002年   8篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   5篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
  1964年   1篇
  1959年   1篇
排序方式: 共有1059条查询结果,搜索用时 15 毫秒
201.
Solvents are very commonly used in industrial facilities for a multitude of reasons. Traditionally, solvent selection has been based on minimizing the process operating cost while satisfying a set of operational requirements. Regrettably, safety considerations have typically been overlooked during the design phase. In this paper, a systematic approach is introduced to integrate safety issues into solvent selection and provides a computationally effective method for establishing tradeoffs between the economic and safety objectives. In order to quantify the risk associated with the solvent, we focus on the potential spillage of the solvent and introduce a risk index that is a function of the amount of solvent used and stored, as well as the Permissible Exposure Limit (PEL) dictated by regulatory directives. An optimization formulation is developed and the associated mathematical program solved to select optimal solvents and blends while incorporating economic, technical, and safety considerations. Tradeoff (Pareto) curves are developed to represent the multi-objective optimization results and tradeoffs. Furthermore, economic-data uncertainty and variability over expected ranges are included in the optimization formulation to conduct an insightful sensitivity analysis. Finally, an illustrative case study is considered via increasing levels of complexity in order to evaluate the proposed optimization method which considers both operating cost and safety risk implications in the presence of economic uncertainties.  相似文献   
202.
203.
Arsenic contamination of groundwater is a major threat to human beings globally. Among various methods available for arsenic removal, adsorption is fast, inexpensive, selective, accurate, reproducible and eco-friendly in nature. The present paper describes removal of arsenate from water on zirconium oxide-coated sand (novel adsorbent). In the present work, zirconium oxide-coated sand was prepared and characterised by infrared and X-ray diffraction techniques. Batch experiments were performed to optimise different adsorption parameters such as initial arsenate concentration (100–1,000 μg/L), dose (1–8 g/L), pH of the solution (2–14), contact time (15–150 min.), and temperature (20, 30, 35 and 40 °C). The experimental data were analysed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Furthermore, thermodynamic and kinetic parameters were evaluated to know the mode of adsorption between ZrOCMS and As(V). The maximum removal of arsenic, 97 %, was achieved at initial arsenic concentration of 200 μg/L, after 75 min at dosage of 5.0 g/L, pH?7.0 and 27?±?2 °C. For 600 μg/L concentration, the maximum Langmuir monolayer adsorption capacity was found to be 270 μg/g at 35 °C. Kinetic modelling data indicated that adsorption process followed pseudo-second-order kinetics. The mechanism is controlled by liquid film diffusion model. Thermodynamic parameter, ΔH°, was ?57.782, while the values of ΔG° were ?9.460, ?12.183, ?13.343 and ?13.905 kJ/mol at 20, 30, 35 and 40 °C, respectively, suggesting exothermic and spontaneous nature of the process. The change in entropy, ΔS°?=??0.23 kJ/mol indicated that the entropy decreased due to adsorption of arsenate ion onto the solid adsorbent. The results indicated that the reported zirconium oxide-coated marine sand (ZrOCMS) was good adsorbent with 97 % removal capacity at 200 μg/L concentration. It is interesting to note that the permissible limit of arsenic as per World Health Organization is 10 μg/L, and in real situation, this low concentration can be achieved through this adsorbent. Besides, the adsorption capacity showed that this adsorbent may be used for the removal of arsenic from any natural water resource.  相似文献   
204.
Because of the continuous production of large amount of waste tires, the disposal of waste tires represents a major environmental issue throughout the world. This paper reports the utilization of waste tires (hard-to-dispose waste) as a precursor in the production of activated carbons (pollution-cleaning adsorbent). In the preparation of activated carbon (AC), waste rubber tire (WRT) was thermally treated and activated. The tire-derived activated carbon was characterized by means of scanning electron microscope, energy-dispersive X-ray spectroscopy, FTIR spectrophotometer, and X-ray diffraction. In the IR spectrum, a number of bands centred at about 3409, 2350, 1710, 1650, and 1300–1000 cm?1 prove the present of hydroxyl and carboxyl groups on the surface of AC in addition to C═C double bonds. The developed AC was tested and evaluated as potential adsorbent removal of chromium (III). Experimental parameters, such as contact time, initial concentration, adsorbent dosage and pH were optimized. A rapid uptake of chromium ions was observed and the equilibrium is achieved in 1 h. It was also found that the adsorption process is pH dependent. This work adds to the global discussion of the cost-effective utilization of waste rubber tires for waste water treatment.  相似文献   
205.
In continuation of investigation for environmentally benign protocol for new solvents termed deep eutectic solvents (DESs), it is herein reported results concerning the toxicity and cytotoxicity of choline chloride (ChCl) based DESs with four hydrogen bond donors including glycerine, ethylene glycol, triethylene glycol and urea. The toxicity was investigated using two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus, and two Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. The cytotoxicity effect was tested using the Artemia salina leach. It was found that there was no toxic effect for the tested DESs on all of the studied bacteria confirming their benign effects on these bacteria. Nevertheless, it was found that the cytotoxicity of DESs was much higher than their individual components (e.g. glycerine, ChCl) indicating that their toxicological behavior is different. For our best knowledge this is the first time that toxicity and cytotoxicity of DESs were studied. The toxicity and cytotoxicity of DESs varied depending on the structure of components. Careful usage of the terms non-toxicity and biodegradability must be considered. More investigation on this matter is required.  相似文献   
206.
Poisonous lead (Pb), among heavy metals, is a potential pollutant that readily accumulates in soils and thus adversely affects physiological processes in plants. We have evaluated how exogenous H2S affects cotton plant physiological attributes and Pb uptake under Pb stress thereby understanding the role of H2S in physiological processes in plants. Two concentrations (0 and 200 μM) of H2S donor sodium hydrosulfide (NaHS) were experimented on cotton plants under Pb stress (0, 50, and 100 μM). Results have shown that Pb stress decreased plant growth, chlorophyll contents, SPAD value, photosynthesis, antioxidant activity. On the other hand, Pb stress increased the level of malondialdehyde (MDA), electrolyte leakage (EL), and production of H2O2 and uptake of Pb contents in all three parts of plant, viz. root, stem, and leaf. Application of H2S slightly increased plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity as compared to control. Hydrogen sulfide supply alleviated the toxic effects of lead on plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity in cotton plants. Hydrogen sulfide also reduced MDA, EL, and production of H2O2 and endogenous Pb levels in the three mentioned plant parts. On the basis of our results, we conclude that H2S has promotive effects which could improve plant survival under Pb stress.  相似文献   
207.
Ma  Jiaxin  An  Dongzi  Cui  Beibei  Liu  Manli  Zhu  Hao  Li  Ming  Ai  Xiaojun  Ali  Wajid  Yan  Cheng 《Environmental science and pollution research international》2022,29(55):82938-82947
Environmental Science and Pollution Research - Biological treatment in wastewater treatment plants releases high amounts of pathogenic bioaerosols. Quantitative microbial risk assessment is a...  相似文献   
208.
Environmental Science and Pollution Research - Due to the increased population in the urbanized areas, considerable attention is being paid on the development of energy-efficient buildings. In...  相似文献   
209.

Using association of plants, nanomaterials, and plant growth-promoting bacteria (PGPR) is a novel approach in remediation of heavy metal-contaminated soils. Co-application of nanoscale zerovalent iron (nZVI) and PGPR to promote phytoremediation of Sb-contaminated soil was investigated in this study. Seedlings of Trifolium repens were exposed to different regimes of nZVI (0, 150, 300, 500, and 1000 mg/kg) and the PGPR, separately and in combination, to investigate the effects on plant growth, Sb uptake, and accumulation and physiological response of the plant in contaminated soil. Co-application of nZVI and PGPR had positive effects on plant establishment and growth in contaminated soil. Greater accumulation of Sb in the shoots compared to the roots of T. repens was observed in all treatments. Using nZVI significantly increased accumulation capacity of T. repens for Sb with the greatest accumulation capacity of 3896.4 μg per pot gained in the “PGPR+500 mg/kg nZVI” treatment. Adverse impacts of using 1000 mg/kg nZVI were found on plant growth and phytoremediation performance. Significant beneficial effect of integrated use of nZVI and PGPR on plant photosynthesis was detected. Co-application of nZVI and PGPR could reduce the required amounts of nZVI for successful phytoremediation of metalloid polluted soils. Intelligent uses of plants in accompany with nanomaterials and PGPR have great application prospects in removal of antimony from soil.

  相似文献   
210.
Environmental Science and Pollution Research - Substantial discharge of hazardous substances, especially dyes and heavy metal ions to the environment, has become a global concern due to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号