Environmental Science and Pollution Research - Mechanical vapor compression and multi-effect evaporation have been widely used in achieving zero discharge of desulfurization wastewater as they are... 相似文献
Environmental Science and Pollution Research - In 2017, the 19th National Congress of the Communist Party of China put forward the concept of high-quality economic development, indicating that the... 相似文献
Environmental Science and Pollution Research - The high NO2/NOX ratio in the after-treatment system is beneficial to its performance and achieved by NO catalytic conversion in diesel oxidation... 相似文献
Environmental Science and Pollution Research - Low-carbon transition has gradually become the focus of research on environmental issues. This paper takes China’s eight major economic regions... 相似文献
Environmental Science and Pollution Research - In the process of coal gangue surface accumulation and underground filling disposal, the heavy metals contained in coal gangue will inevitably... 相似文献
A new method for bisphenol A (BPA) degradation in aqueous solution was developed. The characteristics of BPA degradation in a heterogeneous ultraviolet (UV)/Fenton reaction catalyzed by FeCo2O4/TiO2/graphite oxide (GO) were studied. The properties of the synthesized catalysts were characterized using scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometry. FeCo2O4 and TiO2 were grown as spherical shape, rough surface, and relatively uniform on the surface of GO (FeCo2O4/TiO2/GO). Batch tests were conducted to evaluate the effects of the initial pH, FeCo2O4/TiO2/GO dosage, and H2O2 concentration on BPA degradation. In a system with 0.5 g L−1 of FeCo2O4/TiO2/GO and 10 mmol L−1 of H2O2, approximately 90 % of BPA (20 mg L−1) was degraded within 240 min of UV irradiation at pH 6.0. The reused FeCo2O4/TiO2/GO catalyst retained its activity after three cycles, which indicates that it is stable and reusable. The heterogeneous UV/Fenton reaction catalyzed by FeCo2O4/TiO2/GO is a promising advanced oxidation technology for treating wastewater that contains BPA.