首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22881篇
  免费   251篇
  国内免费   149篇
安全科学   590篇
废物处理   1009篇
环保管理   2988篇
综合类   3788篇
基础理论   6284篇
环境理论   11篇
污染及防治   5960篇
评价与监测   1489篇
社会与环境   1010篇
灾害及防治   152篇
  2022年   201篇
  2021年   231篇
  2020年   148篇
  2019年   167篇
  2018年   324篇
  2017年   341篇
  2016年   503篇
  2015年   368篇
  2014年   562篇
  2013年   1739篇
  2012年   684篇
  2011年   955篇
  2010年   763篇
  2009年   745篇
  2008年   911篇
  2007年   951篇
  2006年   824篇
  2005年   766篇
  2004年   787篇
  2003年   759篇
  2002年   695篇
  2001年   828篇
  2000年   599篇
  1999年   355篇
  1998年   275篇
  1997年   300篇
  1996年   291篇
  1995年   347篇
  1994年   316篇
  1993年   292篇
  1992年   286篇
  1991年   290篇
  1990年   301篇
  1989年   285篇
  1988年   254篇
  1987年   249篇
  1986年   228篇
  1985年   210篇
  1984年   263篇
  1983年   219篇
  1982年   275篇
  1981年   224篇
  1980年   184篇
  1979年   207篇
  1978年   186篇
  1977年   156篇
  1974年   159篇
  1973年   162篇
  1972年   149篇
  1971年   147篇
排序方式: 共有10000条查询结果,搜索用时 117 毫秒
751.
Electroosmotic dewatering of dredged sediments: bench-scale investigation   总被引:1,自引:0,他引:1  
The Indiana Harbor (Indiana, USA) has not been dredged since 1972 due to lack of a suitable disposal site for dredged sediment. As a result of this, over a million cubic yards of highly contaminated sediment has accumulated in the harbor. Recently, the United States Army Corps of Engineers (USACE) has selected a site for the confined disposal facility (CDF) and is in the process of designing it. Although dredging can be accomplished rapidly, the disposal in the CDF has to be done slowly to allow adequate time for consolidation to occur. The sediment possesses very high moisture content and very low hydraulic conductivity, which cause consolidation to occur slowly. Consolidation of the sediment is essential in order to achieve adequate shear strength of sediments and also to provide enough air space to accommodate the large amount of sediment that requires disposal. Currently, it has been estimated that if a one 3-foot (0.9-m) thick layer of sediment was disposed of at the CDF annually, it would take approximately 10 years to dispose of all the sediment that is to be dredged from the Indiana Harbor. This study investigated the feasibility of using an electroosmotic dewatering technology to accelerate dewatering and consolidation of sediment, thereby allowing more rapid disposal of sediment into the CDF. Electroosmotic dewatering essentially involves applying a small electric potential across the sediment layer, thereby inducing rapid flow as a result of physico-chemical and electrochemical processes. A series of bench-scale electrokinetic experiments were conducted on actual dredged sediment samples from the Indiana Harbor to investigate dewatering rates caused by gravity alone, dewatering rates caused by gravity and electric potential, and the effects of the addition of polymer flocculants on dewatering of the sediments. The results showed that electroosmotic dewatering under an applied electric potential of 1.0VDC/cm could increase the rate of dewatering and consolidation by an order of magnitude as compared to gravity drainage alone. Amending the sediment with polymers at low concentrations (0.5-1% by dry weight) will enhance this dewatering process; however, the optimal polymer concentration and the cost-effectiveness of using polymers should be investigated further.  相似文献   
752.
The geographical limitations of Singapore, its restricted natural resources and voluminous municipal and industrial waste streams, make environmental management a major challenge for the island state. In an attempt to find ways to reduce importation of raw materials and the waste sent to landfill, light weight aggregates were produced from marine clay and a CaF(2)-rich semiconductor industry sludge. Aggregates were produced in a bench-scale rotary kiln with three clay/sludge loadings (90/10, 70/30 and 50/50%). All three mixtures showed good bloating behavior during firing and the ceramic pellets (1-1.5cm diameter) had densities well below that required for light-weight aggregates. In the initial tests, the pore sizes of the aggregates were in general too large resulting in high water absorption. Comparisons between the composition of the two waste products and the aggregates showed a significant loss of fluorine (40-60%) during processing; a problem which may require flue gas treatment. Leach testing showed that the formed aggregates would not pose a human or environmental hazard in terms of fluorine mobilization.  相似文献   
753.
This essay identifies and examines scapegoat ecology, an emergent genre in online environmental discourse. In scapegoat ecology, a public of environmentally minded individuals focuses attention and vitriol on a single person for being particularly harmful to the environment. This essay argues that such discourse deflects attention from more complex and systemic environmental factors and implicitly exonerates the broader community, assuring it of its own environmental commitments while excusing it from further ecological action. The essay describes the form and appeal of scapegoat ecology, then provides a series of illustrative case examples before highlighting the implications of such discourse for both environmental communication and broader social/political conversations.  相似文献   
754.
Environmental Science and Pollution Research - Aedes aegypti and Culex quinquefasciatus are vectors of diseases that constitute public health problems. The discovery of products capable of...  相似文献   
755.
This study evaluated the hydrolysis and photolysis kinetics of pyraclostrobin in an aqueous solution using ultra-high-performance liquid chromatography–photodiode array detection and identified the resulting metabolites of pyraclostrobin by hydrolysis and photolysis in paddy water using high-resolution mass spectrometry coupled with liquid chromatography. The effect of solution pH, metal ions and surfactants on the hydrolysis of pyraclostrobin was explored. The hydrolysis half-lives of pyraclostrobin were 23.1–115.5?days and were stable in buffer solution at pH 5.0. The degradation rate of pyraclostrobin in an aqueous solution under sunlight was slower than that under UV photolysis reaction. The half-lives of pyraclostrobin in a buffer solution at pH 5.0, 7.0, 9.0 and in paddy water were less than 12?h under the two light irradiation types. The metabolites of the two processes were identified and compared to further understand the mechanisms underlying hydrolysis and photolysis of pyraclostrobin in natural water. The extracted ions obtained from paddy water were automatically annotated by Compound Discoverer software with manual confirmation of their fragments. Two metabolites were detected and identified in the pyraclostrobin hydrolysis, whereas three metabolites were detected and identified in the photolysis in paddy water.  相似文献   
756.
Russian Journal of Ecology - Abstract—The study of the effect of mycorrhiza symbiosis on the transformation of carbon and nitrogen compounds in soils is important in view of the necessity to...  相似文献   
757.
Environmental Science and Pollution Research - Pesticides might increase the production of reactive oxygen species (ROS). Dicamba (DIC) and 2,4-dichlorophenoxyacetic acid (2,4-D) are auxinic...  相似文献   
758.
Environmental Science and Pollution Research - Bisphenol A (BPA) is a plasticizer used widely in many industrial products and is now well established as an endocrine-disrupting chemical (EDC). BPA...  相似文献   
759.
城市污水生物处理系统中微生物酶的活性及其分布   总被引:1,自引:0,他引:1  
李茵  罗翠  Chr 《环境污染与防治》2007,29(5):333-335
通过水解模式底物进行分光光度测定的方法,研究了城市污水生物处理系统中微生物酶的活性.选取亮氨酸氨基肽酶、β-葡萄糖苷酶、碱性磷酸酶和脂酶等胞外酶进行分析,结果发现4种胞外酶的平均活性在31.O~88.5 μmol/(L·h),其中76.9%~94.8%的酶活性分布在活性污泥中,说明绝大部分胞外酶是与细胞相连或固定在细胞外多聚絮体基质里.混合水样和出水水样中的DOC几乎相等,而各胞外酶与DOC不存在任何显著的相关关系.增加NO3-浓度可提高亮氨酸氨基肽酶和β-葡萄糖苷酶的活性,但对碱性磷酸酶和脂酶却有明显的抑制作用.  相似文献   
760.
Annual global aquaculture production has more than tripled within the past 15 years, and by 2015, aquaculture is predicted to account for 39% of total global seafood production by weight. Given that lack of adequate nutrition is a leading contributor to the global burden of disease, increased food production through aquaculture is a seemingly welcome sign. However, as production surges, aquaculture facilities increasingly rely on the heavy input of formulated feeds, antibiotics, antifungals, and agrochemicals. This review summarizes our current knowledge concerning major chemical, biological and emerging agents that are employed in modern aquaculture facilities and their potential impacts on public health. Findings from this review indicate that current aquaculture practices can lead to elevated levels of antibiotic residues, antibiotic-resistant bacteria, persistent organic pollutants, metals, parasites, and viruses in aquacultured finfish and shellfish. Specific populations at risk of exposure to these contaminants include individuals working in aquaculture facilities, populations living around these facilities, and consumers of aquacultured food products. Additional research is necessary not only to fully understand the human health risks associated with aquacultured fish versus wild-caught fish but also to develop appropriate interventions that could reduce or prevent these risks. In order to adequately understand, address and prevent these impacts at local, national and global scales, researchers, policy makers, governments, and aquaculture industries must collaborate and cooperate in exchanging critical information and developing targeted policies that are practical, effective and enforceable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号