Environmental Science and Pollution Research - Microfaunal identification and analysis are very complex; thus, an image analysis method was utilized in this paper to overcome the shortcomings of... 相似文献
Environmental Science and Pollution Research - In this study, the degradation performance of nutrients in zeolite trickling filter (ZTF) with different influent C/N ratios and aeration conditions... 相似文献
Environmental Science and Pollution Research - In the process of coal gangue surface accumulation and underground filling disposal, the heavy metals contained in coal gangue will inevitably... 相似文献
When accounting the CO2 emissions responsibility of the electricity sector at the provincial level in China,it is of great significance to consider the scope of both producers’ and the consumers’ responsibility,since this will promote fairness in defining emission responsibility and enhance cooperation in emission reduction among provinces.This paper proposes a new method for calculating carbon emissions from the power sector at the provincial level based on the shared responsibility principle and taking into account interregional power exchange.This method can not only be used to account the emission responsibility shared by both the electricity production side and the consumption side,but it is also applicable for calculating the corresponding emission responsibility undertaken by those provinces with net electricity outflow and inflow.This method has been used to account for the carbon emissions responsibilities of the power sector at the provincial level in China since 2011.The empirical results indicate that compared with the production-based accounting method,the carbon emissions of major power-generation provinces in China calculated by the shared responsibility accounting method are reduced by at least 10%,but those of other power-consumption provinces are increased by 20% or more.Secondly,based on the principle of shared responsibility accounting,Inner Mongolia has the highest carbon emissions from the power sector while Hainan has the lowest.Thirdly,four provinces,including Inner Mongolia,Shanxi,Hubei and Anhui,have the highest carbon emissions from net electricity outflow- 14 million t in 2011,accounting for 74.42% of total carbon emissions from net electricity outflow in China.Six provinces,including Hebei,Beijing,Guangdong,Liaoning,Shandong,and Jiangsu,have the highest carbon emissions from net electricity inflow- 11 million t in 2011,accounting for 71.44% of total carbon emissions from net electricity inflow in China.Lastly,this paper has estimated the emission factors of electricity consumption at the provincial level,which can avoid repeated calculations when accounting the emission responsibility of power consumption terminals(e.g.construction,automobile manufacturing and other industries).In addition,these emission factors can also be used to account the emission responsibilities of provincial power grids. 相似文献
In order to remove arsenic (As) from contaminated water, granular Mn-oxide-doped Al oxide (GMAO) was fabricated using the compression method with the addition of organic binder. The analysis results of XRD, SEM, and BET indicated that GMAO was microporous with a large specific surface area of 54.26 m2/g, and it was formed through the aggregation of massive Al/Mn oxide nanoparticles with an amorphous pattern. EDX, mapping, FTIR, and XPS results showed the uniform distribution of Al/Mn elements and numerous hydroxyl groups on the adsorbent surface. Compression tests indicated a satisfactory mechanical strength of GMAO. Batch adsorption results showed that As(V) adsorption achieved equilibrium faster than As(III), whereas the maximum adsorption capacity of As(III) estimated from the Langmuir isotherm at 25 °C (48.52 mg/g) was greater than that of As(V) (37.94 mg/g). The As removal efficiency could be maintained in a wide pH range of 3~8. The presence of phosphate posed a significant adverse effect on As adsorption due to the competition mechanisms. In contrast, Ca2+ and Mg2+ could favor As adsorption via cation-bridge involvement. A regeneration method was developed by using sodium hydroxide solution for As elution from saturated adsorbents, which permitted GMAO to keep over 75% of its As adsorption capacity even after five adsorption–regeneration cycles. Column experiments showed that the breakthrough volumes for the treatment of As(III)-spiked and As(V)-spiked water (As concentration = 100 μg/L) were 2224 and 1952, respectively. Overall, GMAO is a potential adsorbent for effectively removing As from As-contaminated groundwater in filter application.
Based on the China high resolution emission gridded data (1 km spatial resolution), this article is aimed to create a Chinese city carbon dioxide (CO2) emission data set using consolidated data sources as well as normalized and standardized data processing methods. Standard methods were used to calculate city CO2 emissions, including scope 1 and scope 2. Cities with higher CO2 emissions are mostly in north, northeast, and eastern coastal areas. Cities with lower CO2 emissions are in the western region. Cites with higher CO2 emissions are clustered in the Jing-Jin-Ji Region (such as Beijing, Tianjin, and Tangshan), and the Yangtze River Delta region (such as Shanghai and Suzhou). The city per capita CO2 emission is larger in the north than the south. There are obvious aggregations of cities with high per capita CO2 emission in the north. Four cities among the top 10 per capita emissions (Erdos, Wuhai, Shizuishan, and Yinchuan) cluster in the main coal production areas of northern China. This indicates the significant impact of coal resources endowment on city industry and CO2 emissions. The majority (77%) of cities have annual CO2 emissions below 50 million tons. The mean annual emission, among all cities, is 37 million tons. Emissions from service-based cities, which include the smallest number of cities, are the highest. Industrial cities are the largest category and the emission distribution from these cities is close to the normal distribution. Emissions and degree of dispersion, in the other cities (excluding industrial cities and service-based cities), are in the lowest level. Per capita CO2 emissions in these cities are generally below 20 t/person (89%) with a mean value of 11 t/person. The distribution interval of per capita CO2 emission within industrial cities is the largest among the three city categories. This indicates greater differences among per capita CO2 emissions of industrial cities. The distribution interval of per capita CO2 emission of other cities is the lowest, indicating smaller differences of per capita CO2 emissions among this city category. Three policy suggestions are proposed: first, city CO2 emission inventory data in China should be increased, especially for prefecture level cities. Second, city responsibility for emission reduction, and partitioning the national goal should be established, using a bottom-up approach based on specific CO2 emission levels and potential for emission reductions in each city. Third, comparative and benchmarking research on city CO2 emissions should be conducted, and a Top Runner system of city CO2 emission reduction should be established. 相似文献