Environmental Science and Pollution Research - In the present study, heavy metal (HM)-tolerant phosphate solubilizing bacteria (PSB) were isolated and their performance during the remediation of Pb... 相似文献
Hyperaccumulators contain tubular cellulose and heavy metals, which can be used as the sources of carbon and metals to synthesize nanomaterials. In this paper, carbon nanotubes (CNTs), Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites were synthesized using Brassica juncea L. plants, and the ultraviolet (UV)-light-driven photocatalytic degradations of bisphenol A (BPA) using them as photocatalysts were studied. It was found that the outer diameter of CNTs was around 50 nm and there were a few defects in the crystal lattice. The synthesized Cu0.05Zn0.95O nanocomposites had a diameter of around 40 nm. Cu0.05Zn0.95O nanocomposites have grown on the surface of the CNTs and the outer diameter of them was around 100 nm. The synthesized hybrid carbon nanotubes using B. juncea could enhance the efficiency of photocatalytic degradation on BPA. The complete equilibration time of adsorption/desorption of BPA onto the surface of CNTs, Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites was within 30, 20, and 30 min, and approximately 14.9, 8.7, and 17.4 % BPA was adsorbed by them, respectively. The combination of UV light irradiation (90 min) with CNTs, Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites could lead to 48.3, 75.7, and 92.6 % decomposition yields of BPA, respectively. These findings constitute a new insight for synthesizing nanocatalyst by reusing hyperaccumulators. 相似文献
The optimal allocation of sediment resources needs to balance three objectives including ecological, economic, and social benefits so as to realize sustainable development of sediment resources. This study aims to apply fuzzy programming and bargaining approaches to solve the problem of optimal allocation of sediment resources. Firstly, Pareto-optimal solutions of multi-objective optimization were introduced, and the multi-objective optimal allocation model of sediment resources and fuzzy programming model was constructed. Then, from the perspective of multiplayer cooperation, the optimal allocation model of sediment resources was transformed into a game model by using Nash bargaining, and Nash bargaining solution was obtained as the optimal equilibrium strategy. Finally, the influence of different disagreement utility points and bargaining weights on the results was discussed, and the results of Nash bargaining and fuzzy programming methods were compared and analyzed. Results corroborate that Nash bargaining can achieve the cooperative optimization of multiple objectives with competitive relationship and obtain satisfactory scheme. Disagreement utility points and bargaining weights have a certain impact on the optimization results. The solution of fuzzy programming is close to that of Nash bargaining, which provides different ideas for multi-objective optimization problem.