Water contamination by emerging organic pollutants is calling for advanced methods of remediation such as iron-activated sulfite-based advanced oxidation. Sulfate radical, SO4??, and hydroxyl radical, ?OH, are the primary reactive intermediates formed in the Fe(III)/sulfite system, yet the possible involvement of Fe(IV) produced from Fe(II) and persulfates is unclear. Here we explored the role of Fe(IV) in the Fe(III)/sulfite system by methyl phenyl sulfoxide (PMSO) probe assay, electron paramagnetic resonance spectra analysis, alcohol scavenging experiment, and kinetic simulation. Results show that PMSO is partially transformed into methyl phenyl sulfone (PMSO2), thus evidencing Fe(IV) formation. The remaining degradation of PMSO is due to SO4?? and ?OH. The contribution of Fe(IV) versus free radicals is progressively promoted when the Fe(III)-sulfite reaction proceeds, with an upper limit of 80–90%. The contribution of Fe(IV) versus free radicals increases with Fe(III) and sulfite dosages, and decreases with increasing pH. Overall, our findings demonstrate the involvement of Fe(IV) in the Fe-catalyzed sulfite auto-oxidation process.
<正>Arsenic(As)is a well-recognized toxicant and carcinogen.Chronic exposure to inorganic arsenic causes a range of human cancers(e.g.,skin,bladder,and lung)and increases the risk of developing diabetes,hypertension,and cardiovascular and neurological diseases.The prevalence of arsenic species and the severity of their health effects continue to drive and demand for extensive research(Carlin et al.,2016). 相似文献