Environmental Science and Pollution Research - Low-carbon transition has gradually become the focus of research on environmental issues. This paper takes China’s eight major economic regions... 相似文献
Environmental Science and Pollution Research - In the process of coal gangue surface accumulation and underground filling disposal, the heavy metals contained in coal gangue will inevitably... 相似文献
A new method for bisphenol A (BPA) degradation in aqueous solution was developed. The characteristics of BPA degradation in a heterogeneous ultraviolet (UV)/Fenton reaction catalyzed by FeCo2O4/TiO2/graphite oxide (GO) were studied. The properties of the synthesized catalysts were characterized using scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometry. FeCo2O4 and TiO2 were grown as spherical shape, rough surface, and relatively uniform on the surface of GO (FeCo2O4/TiO2/GO). Batch tests were conducted to evaluate the effects of the initial pH, FeCo2O4/TiO2/GO dosage, and H2O2 concentration on BPA degradation. In a system with 0.5 g L−1 of FeCo2O4/TiO2/GO and 10 mmol L−1 of H2O2, approximately 90 % of BPA (20 mg L−1) was degraded within 240 min of UV irradiation at pH 6.0. The reused FeCo2O4/TiO2/GO catalyst retained its activity after three cycles, which indicates that it is stable and reusable. The heterogeneous UV/Fenton reaction catalyzed by FeCo2O4/TiO2/GO is a promising advanced oxidation technology for treating wastewater that contains BPA.
Several methods to prepare a biodesulfurization (BDS) biocatalyst were investigated in this study using a strain of Rhodococcus sp. 1awq. This bacterium could selectively remove sulfur from dibenzothiophene (DBT) via the "4S" pathway. DBT, dimethylsulfoxide (DMSO), sodium sulphate and mixed sulfur sources were used to study their influence on cell density, desulfurization activity, desulfurization ability, and the cost of biocatalyst production. In contrast to that observed from bacteria cultured in DBT, only partial desulfurization activity of strain 1awq was induced by DBT after cultivation in a medium containing inorganic sulfur as the sole sulfur source. The biocatalyst, prepared from culture with mixed sulfur sources, was found to possess desulfurization activity. With DMSO as the sole sulfur source, the desulfurization activity was shown to be similar to that of bacteria incubated in medium with DBT as the sole sulfur source. The biocatalyst prepared by this method with the least cost could remove sulfur from hydrodesulfurization (HDS)-treated diesel oil efficiently, providing a total desulfurization percent of 78% and suggesting its cost-effective advantage. 相似文献