首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12385篇
  免费   492篇
  国内免费   4442篇
安全科学   816篇
废物处理   800篇
环保管理   930篇
综合类   6863篇
基础理论   2033篇
环境理论   6篇
污染及防治   4406篇
评价与监测   468篇
社会与环境   433篇
灾害及防治   564篇
  2024年   1篇
  2023年   197篇
  2022年   577篇
  2021年   483篇
  2020年   353篇
  2019年   360篇
  2018年   482篇
  2017年   560篇
  2016年   523篇
  2015年   699篇
  2014年   967篇
  2013年   1275篇
  2012年   1020篇
  2011年   1191篇
  2010年   855篇
  2009年   846篇
  2008年   887篇
  2007年   696篇
  2006年   657篇
  2005年   482篇
  2004年   351篇
  2003年   437篇
  2002年   385篇
  2001年   312篇
  2000年   343篇
  1999年   399篇
  1998年   328篇
  1997年   311篇
  1996年   295篇
  1995年   260篇
  1994年   177篇
  1993年   156篇
  1992年   113篇
  1991年   94篇
  1990年   64篇
  1989年   54篇
  1988年   44篇
  1987年   19篇
  1986年   22篇
  1985年   11篇
  1984年   11篇
  1983年   10篇
  1982年   10篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
工业内窥镜是电站锅炉内部检验中不可或缺的设备,主要用来对集箱、减温器、受热面管等内部人眼无法观察到的地方进行检验,从而确定承压部件内部是否存在严重影响锅炉安全运行的缺陷.本文通过对锅炉内窥实例进行分析和总结,阐述内窥镜检查在锅炉内检中的重要性并给相关工作人员提供借鉴与参考.  相似文献   
922.
总结了涪陵页岩气田开发初期钻井岩屑采用固化填埋方式处置存在占地面积大且易产生二次污染隐患等问题,因地制宜地探索钻井岩屑的资源化利用。分析了水基岩屑随钻预处理和油基岩屑热脱附技术,结合钻井岩屑的理化性质,开展了水基岩屑脱水后干渣制路基材料、制砖及水泥窑协同处置,油基岩屑灰渣制混凝土、制砖及水泥窑协同处置的探索和实践,基于环境安全、技术稳定可靠、消纳量大的原则,最终形成了涪陵页岩气田钻井岩屑资源化方案:水基岩屑"随钻预处理、水泥窑协同处置",油基岩屑"热脱附、水泥窑协同处置",实现了钻井岩屑的资源化综合利用。  相似文献   
923.
大多数天然气藏CO2含量为10%~98%,CO2在不同的温度、压力条件下腐蚀极其严重。文章主要针对高含CO2天然气运输管道腐蚀的问题,开展缓蚀剂的筛选,重点开展CO2腐蚀规律研究与实验,评价环境温度、CO2分压、流动速度对腐蚀规律的影响,明确缓蚀剂的影响因素,结合管材的材质,优选评价不同类型的缓蚀剂,缓蚀效率分别为90.53%和92.64%,在管道凝液介质的气相及液相中都有较高的缓蚀效率。通过设计现场加药工艺及制度,监测评价缓蚀剂缓释效果和腐蚀情况,可防止管道运输过程中CO2腐蚀的侵害,长输管线内腐蚀控制良好。  相似文献   
924.
Devils Lake is a terminal lake located in northeast North Dakota. Because of its glacial origin and accumulated salts from evaporation, the lake has a high concentration of sulfate compared to the surrounding water bodies. From 1993 to 2011, Devils Lake water levels rose by ~10 m, which flooded surrounding communities and increased the chance of an overspill to the Sheyenne River. To control the flooding, the State of North Dakota constructed two outlets to pump the lake water to the river. However, the pumped water has raised concerns about of water quality degradation and potential flooding risk of the Sheyenne River. To investigate these perceived impacts, a Soil and Water Assessment Tool (SWAT) model was developed for the Sheyenne River and it was linked to a coupled SWAT and CE‐QUAL‐W2 model that was developed for Devils Lake in a previous study. While the current outlet schedule has attempted to maintain the total river discharge within the confines of a two‐year flood (36 m3/s), our simulation from 2012 to 2018 revealed that the diversion increased the Sheyenne River sulfate concentration from an average of 125 to >750 mg/L. Furthermore, a conceptual optimization model was developed with a goal of better preserving the water quality of the Sheyenne River while effectively mitigating the flooding of Devils Lake. The optimal solution provides a “win–win” outlet management that maintains the efficiency of the outlets while reducing the Sheyenne River sulfate concentration to ≤600 mg/L.  相似文献   
925.
DNA宏条形码技术作为一种新型生物监测方法,在未来生态环境监测中有巨大的应用潜力。目前,浮游动物DNA宏条形码监测仍在发展阶段,需要首先对其(采样方法、引物选择和数据分析等)进行标准化和调整,然后才能用于常规流域生态监测。其中,如何选择合适的PCR扩增引物是DNA宏条形码生物监测标准化的关键问题之一。本研究比较了COI、18SV9和16S通用引物在浮游动物DNA宏条形码监测中的差异,为初步建立规范化的浮游动物DNA宏条形码监测方法提供技术支撑。结果表明,16S引物对浮游动物具有更好的特异性,其产生的操作分类单元(operational taxonomic unit, OTU)有88.1%属于浮游动物。虽然18SV9引物具有更高的物种覆盖度,不仅能扩增出浮游动物,还能扩增出大量藻类和真菌,但其物种识别敏感性较差,不适合浮游动物物种水平多样性监测。COI引物的浮游动物物种特异性、物种覆盖度和物种识别敏感性都适中,检出的浮游动物物种数量高于18SV9引物和16S引物,更加适合浮游动物DNA宏条形码监测。  相似文献   
926.
• Magnetotactic bacteria (MTB) synthesize magnetic nanoparticle within magnetosomes. • The morphologic and phylogenetic diversity of MTB were summarized. • Isolation and mass cultivation of MTB deserve extensive research for applications. • MTB can remove heavy metals, radionuclides, and organic pollutants from wastewater. Magnetotactic bacteria (MTB) are a group of Gram-negative prokaryotes that respond to the geomagnetic field. This unique property is attributed to the intracellular magnetosomes, which contains membrane-bound nanocrystals of magnetic iron minerals. This review summarizes the most recent advances in MTB, magnetosomes, and their potential applications especially the environmental pollutant control or remediation. The morphologic and phylogenetic diversity of MTB were first introduced, followed by a critical review of isolation and cultivation methods. Past research has devoted to optimize the factors, such as oxygen, carbon source, nitrogen source, nutrient broth, iron source, and mineral elements for the growth of MTB. Besides the applications of MTB in modern biological and medical fields, little attention was made on the environmental applications of MTB for wastewater treatment, which has been summarized in this review. For example, applications of MTB as adsorbents have resulted in a novel magnetic separation technology for removal of heavy metals or organic pollutants in wastewater. In addition, we summarized the current advance on pathogen removal and detection of endocrine disruptor which can inspire new insights toward sustainable engineering and practices. Finally, the new perspectives and possible directions for future studies are recommended, such as isolation of MTB, genetic modification of MTB for mass production and new environmental applications. The ultimate objective of this review is to promote the applications of MTB and magnetosomes in the environmental fields.  相似文献   
927.
• Published data was used to analyze the fate of ARGs in water treatment. • Biomass removal leads to the reduction in absolute abundance of ARGs. • Mechanism that filter biofilm maintain ARB/ARGs was summarized. • Potential BAR risks caused by biofiltration and chlorination were proposed. The bacterial antibiotic resistome (BAR) is one of the most serious contemporary medical challenges. The BAR problem in drinking water is receiving growing attention. In this study, we focused on the distribution, changes, and health risks of the BAR throughout the drinking water treatment system. We extracted the antibiotic resistance gene (ARG) data from recent publications and analyzed ARG profiles based on diversity, absolute abundance, and relative abundance. The absolute abundance of ARG was found to decrease with water treatment processes and was positively correlated with the abundance of 16S rRNA (r2 = 0.963, p<0.001), indicating that the reduction of ARG concentration was accompanied by decreasing biomass. Among treatment processes, biofiltration and chlorination were discovered to play important roles in shaping the bacterial antibiotic resistome. Chlorination exhibited positive effects in controlling the diversity of ARG, while biofiltration, especially granular activated carbon filtration, increased the diversity of ARG. Both biofiltration and chlorination altered the structure of the resistome by affecting relative ARG abundance. In addition, we analyzed the mechanism behind the impact of biofiltration and chlorination on the bacterial antibiotic resistome. By intercepting influent ARG-carrying bacteria, biofilters can enrich various ARGs and maintain ARGs in biofilm. Chlorination further selects bacteria co-resistant to chlorine and antibiotics. Finally, we proposed the BAR health risks caused by biofiltration and chlorination in water treatment. To reduce potential BAR risk in drinking water, membrane filtration technology and water boiling are recommended at the point of use.  相似文献   
928.
• Washed MSWI fly ash was used as partial cement or sand substitute. • Sand replacing is beneficial for strength, while cement replacement reduces strength. • Cementing efficiency factor and mortar pore structure explain the strength results. • Health risk assessment was conducted for MSWI fly ash blended cement mortar. • CR and HI contributed by different exposures and heavy metals were analyzed. The strength of cement substituted mortar decreases with the increase in fly ash amount, whereas the strength increases when the fly ash is blended as sand substitute. A mortar with highest strength (compressive strength= 30.2 Mpa; flexural strength= 7.0 Mpa) was obtained when the sand replacement ratio was 0.75%. The k value (cementing efficiency) of fly ash varied between 0.36 and 0.15 for the fly ash fraction in binder between 5% and 25%. The k values of fly ash used for sand replacement were all significantly above that used for cement substitution. The macropores assigned to the gaps between particles decreased when the fly ash was used as sand replacement, providing an explanation for the strength enhancement. The waste-extraction procedure (toxicity-sulphuric acid and nitric acid method (HJ/T 299-2007)) was used to evaluate metal leaching, indicating the reuse possibility of fly ash blended mortar. For the mortar with the mass ratio of fly ash to binder of 0.5%, the carcinogenic risks (CR) and non-carcinogenic hazard quotient (HQ) in sensitive scenario for blended mortar utilization were 9.66 × 10-7 and 0.06, respectively; these results were both lower than the threshold values, showing an acceptable health risk. The CR (9.89 × 10-5) and HQ (3.89) of the non-sensitive scenario for fly ash treatment exceeded the acceptable threshold values, indicating health risks to onsite workers. The main contributor to the carcinogenic and non-carcinogenic risk is Cr and Cd, respectively. The CR and HQ from inhalation was the main route of heavy metal exposure.  相似文献   
929.
• Pig feces is the predominant excrement produced by animal husbandry in China. • The PF, Pig-1-BacTaqMan, and Pig-2-BacTaqMan MST assays showed better performance. • The pig-specific MST assays can contribute to managing the pig fecal pollution. In China, pig feces is the predominant source of excrement produced by animal husbandry. Improper use or direct discharge of pig feces can result in contamination of natural water systems. Microbial source tracking (MST) technology can identify the sources of fecal pollution in environmental water, and contribute to the management of pig fecal pollution by local environmental protection agencies. However, the accuracy of such assays can be context-dependent, and they have not been comprehensively evaluated under Chinese conditions. We aimed to compare the performance of five previously reported pig-specific MST assays (PF, Pig-Bac1SYBR, Pig-Bac2SYBR, Pig-1-BacTaqMan, and Pig-2-BacTaqMan, which are based on Bacteroidales 16S rRNA gene markers) and apply them in two rivers of North China. We collected a total of 173 fecal samples from pigs, cows, goats, chickens, humans, and horses across China. The PF assay optimized in this study showed outstanding qualitative performance and achieved 100% specificity and sensitivity. However, the two SYBR green qPCR assays (Pig-Bac1SYBR and Pig-Bac2SYBR) cross-reacted with most non-pig fecal samples. In contrast, both the Pig-1-BacTaqMan and Pig-2-BacTaqMan assays gave 100% specificity and sensitivity. Of these, the Pig-2-BacTaqMan assay showed higher reproducibility. Our results regarding the specificity of these pig-specific MST assays differ from those reported in Thailand, Japan, and America. Using the PF and Pig-2-BacTaqMan assays, a field test comparing the levels of pig fecal pollution in rivers near a pig farm before and after comprehensive environmental pollution governance indicated that pig fecal pollution was effectively controlled at this location.  相似文献   
930.
• Highly efficient debromination of BDE-47 was achieved in the ZVZ/AA system. • BDE-47 debromination by the ZVZ/AA can be applied to a wide range of pH. • AA inhibits the formation of (hydr)oxide and accelerates the corrosion of ZVZ. • Reduction mechanism of BDE-47 debromination by the ZVZ/AA system was proposed. A new technique of zero-valent zinc coupled with ascorbic acid (ZVZ/AA) was developed and applied to debrominate the 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47), which achieved high conversion and rapid debromination of BDE-47 to less- or non-toxic forms. The reaction conditions were optimized by the addition of 100 mg/L ZVZ particles and 3 mmol/L AA at original solution pH= 4.00 using the solvent of methanol/H2O (v:v= 4:6), which could convert approximately 94% of 5 mg/L BDE-47 into lower-brominated diphenyl ethers within a 90 min at the ZVZ/AA system. The high debromination of BDE-47 was mainly attributed to the effect of AA that inhibits the formation of Zn(II)(hydr)oxide passivation layers and promotes the corrosion of ZVZ, which leads to increase the reactivity of ZVZ. Additionally, ion chromatography and gas chromatography mass spectrometry analyses revealed that bromine ion and lower-debromination diphenyl ethers formed during the reduction of BDE-47. Furthermore, based on the generation of the intermediates products, and its concentration changes over time, it was proposed that the dominant pathway for conversion of BDE-47 was sequential debromination and the final products were diphenyl ethers. These results suggested that the ZVZ/AA system has the potential for highly efficient debromination of BDE-47 from wastewater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号