The study was undertaken to evaluate the environmental exposure to polycyclic aromatic hydrocarbons in subjects living in the area of recycling electronic garbage in Southern China and research the influence of environment smoke tobacco (EST) to people through active and passive smoking. Urinary concentrations of 2-hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene were determined in 141 randomly selected voluntary residents aged 13 to 81 years in two polycyclic aromatic hydrocarbon (PAH)-exposed groups, two control groups, and an EST research group. The concentrations of 2-hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene in PAH-exposed groups are significantly higher (p?0.05) than those of control groups. Mean value of 1-hydroxypyrene in the residents living in the area of recycling electronic garbage (1.1 μmol/mol creatinine) is a little higher than those of iron foundry workers, automobile repair workers, and firefighters. Mean value of 2-hydroxynaphthalene (11.3 μmol/mol creatinine) is much higher than that of shipyard and aircraft maintenance and much lower than some occupational exposure, such as coking batteries, sorting department, and distillation department in coking plant. Some metabolites of PAHs (PAHm) are significantly elevated through active and passive smoking, while the influence of EST to other PAHm is not statistically significant. 2-Hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene in the urine of smokers are, respectively, 3.9, 1.9, 1.4, and 1.9 times to those of nonsmokers. In nonsmokers, passive smokers excreted 1.1, 1.5, 1.9, and 1.5 times of 2-hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene compared to nonpassive smokers. 相似文献
In order to remove arsenic (As) from contaminated water, granular Mn-oxide-doped Al oxide (GMAO) was fabricated using the compression method with the addition of organic binder. The analysis results of XRD, SEM, and BET indicated that GMAO was microporous with a large specific surface area of 54.26 m2/g, and it was formed through the aggregation of massive Al/Mn oxide nanoparticles with an amorphous pattern. EDX, mapping, FTIR, and XPS results showed the uniform distribution of Al/Mn elements and numerous hydroxyl groups on the adsorbent surface. Compression tests indicated a satisfactory mechanical strength of GMAO. Batch adsorption results showed that As(V) adsorption achieved equilibrium faster than As(III), whereas the maximum adsorption capacity of As(III) estimated from the Langmuir isotherm at 25 °C (48.52 mg/g) was greater than that of As(V) (37.94 mg/g). The As removal efficiency could be maintained in a wide pH range of 3~8. The presence of phosphate posed a significant adverse effect on As adsorption due to the competition mechanisms. In contrast, Ca2+ and Mg2+ could favor As adsorption via cation-bridge involvement. A regeneration method was developed by using sodium hydroxide solution for As elution from saturated adsorbents, which permitted GMAO to keep over 75% of its As adsorption capacity even after five adsorption–regeneration cycles. Column experiments showed that the breakthrough volumes for the treatment of As(III)-spiked and As(V)-spiked water (As concentration = 100 μg/L) were 2224 and 1952, respectively. Overall, GMAO is a potential adsorbent for effectively removing As from As-contaminated groundwater in filter application.
Foliar uptake of airborne lead is one of the pathways for Pb accumulation in plant organs. However, the approximate contributions of airborne Pb to plant organs are still unclear. In the present study, aerosols (nine-stage size-segregated aerosols and total suspended particulates), a wild plant species (Aster subulatus) and the corresponding soils were collected and Pb contents and isotopic ratios in these samples were analyzed. Average concentration of Pb was 96.5 ± 63.5 ng m−3 in total suspended particulates (TSP) and 20.4 ± 5.5 ng m−3 in the fine fractions of size-segregated aerosols (SSA) (<2.1 μm), higher than that in the coarser fractions (>2.1 μm) (6.38 ± 3.71 ng m−3). Enrichment factors show that aerosols and soils suffered from anthropogenic inputs and the fine fractions of the size-segregated aerosols enriched more Pb than the coarse fractions. The order of Pb contents in A. subulatus was roots > leaves > stems. The linear relationship of Pb isotope ratios (206Pb/207Pb and 208Pb/206Pb) among soil, plant and aerosol samples were found. Based on the simple binary Pb isotopic model using the mean 206Pb/207Pb ratios in TSP and in SSA, the approximate contributions of airborne Pb into plant leaves were 72.2% and 65.1%, respectively, suggesting that airborne Pb is the most important source for the Pb accumulation in leaves. So the combination of Pb isotope tracing and the simple binary Pb isotope model can assess the contribution of airborne Pb into plant leaves and may be of interest for risk assessment of the exposure to airborne Pb contamination. 相似文献
Laser-induced breakdown spectroscopy (LIBS) has been evaluated as a multimetal continuous emissions monitor (CEM) at the U.S. Environmental Protection Agency (EPA) rotary kiln incinerator simulator (RKIS) facility in Raleigh, NC. Two detection systems with a bifurcated optical fiber bundle were used for simultaneously monitoring the concentrations of Be, Cd, Cr, and Hg in the test. Two calibration techniques were evaluated in the laboratory for the field measurements. On-line calibration of relative metal concentration was also performed in the simulated incinerator gas stream. Toxic metal concentrations measured with LIBS have been compared with the EPA reference method (RM) results. 相似文献