Environmental safety data are presented for [S,S]-Ethylene Diamine Disuccinate ([S,S]EDDS), a new, biodegradable, strong transition metal chelator. An environmental risk assessment for its use in detergent applications, which takes into account the chelating properties of [S,S]-EDDS, is proposed.
A property of [S,S]-EDDS that distinguishes it from other strong transition metal chelators is its, “ready” and transparent (no recalcitrant metabolites) biodegradation profile. Because its sorption to activated sludge solids is low ( Kp of 40 1/kg), removal of [S,S]EDDS during sewage treatment, which is greater than 96% as determined by the Continuous Activated Sludge test , is mainly ascribed to biodegradation. At projected use volumes in detergent applications [S,S] - EDDS predicted steady-state concentration in rivers leaving the mixing zone will be below 5 pg/I due to rapid biodegradation. [S,S]-EDDS exhibits low toxicity to fish and Daphnia ( both EC50s> 1000 mg/l). By contrast, due to limitation of the algal test for chelators apparent toxicity was observed (EC50 = 0.290 mg/l, NOEC - No observable Effect Concentration = 0.125 mg/l). Schowanek et al. [1] demonstrated that this is not toxicity sensu stricto but a chelation effect of trace metals in the test medium and of resulting essential nutrients limitation. This requires specific attention when the results of algal toxicity are to be extrapolated to a field situation to perform realistic risk assessment. Metal speciation calculations, using MINEQL+, show that at the predicted environmental concentrations of [S,S] - EDDS (1–5 μg/l), such a chelation effect would be insignificant. These calculations allow to estimate the NOEC for chelation effects in the field to be in the range of 0.250-0.500 mg/l, depending on the background water chemistry. These values are well above the laboratory NOEC.
An environmental risk assessment was performed using the EUSES (1.0) program. EUSES is currently the EU recommended tool for conducting risk assessments (TGD 1995). It was applied to estimate the river water and soil concentrations from production, formulation and private use life stages. The estimated PEC/PNEC ratio in all relevant environmental compartments is smaller than 1, indicating “no immediate concern” at the anticipated usage level. 相似文献
The acute toxicity (96 h) of pyrene (PY) to European seabass (Dicentrachus labrax) juveniles assessed in a semi-static bioassay (SSB) with medium renewal at each 12 h, and in a static bioassay (SB) without medium renewal was compared in laboratorial conditions (water PY concentrations: 0.07-10 mg L−1). Main findings in the SSB that assessed mainly the toxicity of PY and its metabolites were: increased levels of bile PY metabolites in good agreement with the profile of lipid peroxidation levels (LPO) in exposed fish relating PY exposure and oxidative damage; increased levels of PY-type compounds in the brain indicating their ability to cross the blood-brain barrier; increased levels of these substances in liver and muscle which are edible tissues for humans thus raising concern on potential adverse effects on consumers of fish from PY contaminated areas; a significant inhibition of glutathione S-transferase activity suggesting its involvement in PY detoxication as toxicant scavenger; finally, an almost complete impairment of the swimming velocity at all the PY concentrations linking sub-individual to higher population level effects. In the SB, where the overall toxicity of PY, its metabolites and environmental degradation products was evaluated, 19% and 79% of PY decay in test media was found at 12 and 96 h, respectively. In general, the effects were similar to those of SSB but with significant effects being induced at higher PY concentrations indicating that the parental compound is more toxic than its environmental degradation products. The other main differences relatively to the SSB were: increased levels of PY-type substances in the liver suggesting more accumulation in this organ. Therefore, these findings highlight the need of carefully considering experimental design options when assessing the toxicity of readily degradable substances to marine fish, and stress the importance of taking into consideration the toxicity of environmental degradation products in addition to toxic effects of the parental substance and its metabolites for marine ecological risk assessment. 相似文献
The assessment of aquifer vulnerability is a very important task, especially in agricultural areas because the quality and availability of groundwater affects both the sustainability of agriculture and the quality of life. In this study, an integrated approach is considered, with the use of the generic and agricultural DRASTIC models as well as a geographic information system (GIS), to assess groundwater vulnerability in the agricultural area of Barrax, in the province of Albacete, in Spain. Seven parameters—depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone media, and hydraulic conductivity of the aquifer (DRASTIC)—have been considered as weighted layers to enable an accurate groundwater risk mapping. The results of the generic DRASTIC model indicated very low vulnerability to contamination for Barrax groundwater due to limited urban and industrial development in the wider area. However, agricultural activities impose pressure to groundwater resources and the results of the agricultural DRASTIC model show that 6.86% of the study area is characterized by very high, 2.29% by high, 47.28% by medium, 38.28% by low, and the remaining 5.29% by no vulnerability to groundwater contamination. The distribution of nitrate concentration in groundwater in the area under study is quite well correlated with the agricultural DRASTIC vulnerability index. Sensitivity analysis was also performed to acknowledge statistical uncertainty in the estimation of each parameter used, to assess its impact, and thus to identify the most critical parameters that require further investigation. Depth to water and impact of vadose zone are the parameters that had the most noticeable impact on the generic DRASTIC vulnerability index followed by the soil media and topography. In contrast, the agricultural DRASTIC method is more sensitive to the removal of the depth to water parameter followed by the topography and the soil media parameters. 相似文献
Probabilistic material flow analysis and graph theory were combined to calculate predicted environmental concentrations (PECs) of engineered nanomaterials (ENMs) in Swiss rivers: 543 river sections were used to assess the geographical variability of nano-TiO2, nano-ZnO and nano-Ag, and flow measurements over a 20-year period at 21 locations served to evaluate temporal variation. A conservative scenario assuming no ENM removal and an optimistic scenario covering complete ENM transformation/deposition were considered. ENM concentrations varied by a factor 5 due to uncertain ENM emissions (15%-85% quantiles of ENM emissions) and up to a factor of 10 due to temporal river flow variations (15%-85% quantiles of flow). The results indicate highly variable local PECs and a location- and time-dependent risk evaluation. Nano-TiO2 median PECs ranged from 11 to 1′623 ng L−1 (conservative scenario) and from 2 to 1′618 ng L−1 (optimistic scenario). The equivalent values for nano-ZnO and nano-Ag were by factors of 14 and 240 smaller. 相似文献
Existing methods of establishing ambientair quality monitoring networks typically evaluateonly parameters related to ambient concentrations ofthe contaminant(s) of interest such as emissionsource characteristics, atmospheric transport anddispersion, secondary reactions, depositioncharacteristics, and local topography. However,adverse health risks from exposures to airbornecontaminants are a function of the contaminant andthe anatomic and physiologic characteristics of theexposed population. Thus, ambient air qualitymonitoring networks designed for the protection ofpublic health or for epidemiological studiesevaluating adverse health impacts from exposures toambient air contaminants should account for bothcontaminant characteristics and human healthparameters. A methodology has been establishedwhich optimizes ambient air quality monitoringnetworks for assessments of adverse human healthimpacts from exposures to airborne contaminants byincorporating human health risk assessmenttechniques. The use of risk assessment techniquesas the basis for designing ambient air qualitymonitoring networks will help to target limitedfinancial and human resources to evaluate humanhealth risks from exposures to airbornecontaminants. 相似文献
Policy and research issues in the framing and qualities of uncertainties in risks are analyzed, based on the assessments of
dioxin-like compounds (DLCs) and other ingredients in Baltic Sea fish, a high-profile case of governance. Risks are framed
broadly, to then focus on dioxins and beneficial fatty acids, fish consumption, human health, and science-management links.
Hierarchies of uncertainty (data, model, decision rule, and epistemic) and ambiguity (of values) are used to identify issues
of scientific and policy contestation and opportunities for resolving them. The associated complexity of risks is illustrated
by risk–benefit analyses of fish consumption and by evaluations of guideline values, highlighting value contents and policy
factors in presumably scientific decision criteria, and arguments used in multi-dimensional risk and benefit comparisons.
These comparisons pose challenges to narrow assessments centered, for e.g., on toxicants or on food benefits, and to more
many-sided and balanced risk communication and management. It is shown that structured and contextualized treatment of uncertainties
and ambiguities in a reflexive approach can inform balances between wide and narrow focus, detail and generality, and evidence
and precaution. 相似文献
Ground-water flow and solute-transport simulation modeling are major components of most exposure and risk assessments of contaminated aquifers. Model simulations provide information on the spatial and temporal distributions of contaminants in subsurface media but are difficult to apply to karst aquifers in which conduit flow is important. Ground-water flow and solute transport in karst conduits typically display rapid-flow velocities, turbulent-flow regimes, concentrated pollutant-mass discharge, and exhibit open-channel or closed-conduit flow. Conventional ground-water models, dependent on the applicability of Darcy`s law, are inappropriate when applied to karst aquifers because of the (1) nonapplicability of Darcian-flow parameters, (2) typically nonlaminar flow regime, and (3) inability to locate the karst conduits through which most flow and contaminant transport occurs. Surface-water flow and solute-transport models conditioned on a set of parameters determined empirically from quantitative ground-water tracing studies may be effectively used to render fate-and-transport values of contaminants in karst conduits. Hydraulic-flow and geometric parameters developed in a companion paper were used in the surface-water model, TOXI5, to simulate hypothetical slug and continuous-source releases of ethylbenzene in a karst conduit. TOXI5 simulation results showed considerable improvement for predicted ethylbenzene-transport rates and concentrations over qualitative tracing and analytical ground-water model results. Ethylbenzene concentrations predicted by TOXI5 simulations were evaluated in exposure and risk assessment models. 相似文献
Nitrate contamination of water sources is a concern where large amounts of nitrogen fertilizers are regularly applied to soils.
Ingested nitrate from dietary sources and drinking water can be converted to nitrite and ultimately to N-nitroso compounds,
many of which are known carcinogens. Epidemiologic studies of drinking water nitrate and cancer report mixed findings; a criticism
is the use of nitrate concentrations from retrospective drinking water data to assign exposure levels. Residential point-of-use
nitrate data are scarce; gaps in historical data for municipal supply finished water hamper exposure classification efforts.
We used generalized linear regression models to estimate and compare historical raw water and finished water nitrate levels
(1960s--1990s) in single source Iowa municipal supplies to determine whether raw water monitoring data could supplement finished
water data to improve exposure assessment. Comparison of raw water and finished water samples (same sampling date) showed
a significant difference in nitrate levels in municipalities using rivers; municipalities using other surface water or alluvial
groundwater had no difference in nitrate levels. A regional aggregation of alluvial groundwater municipalities was constructed
based on results from a previous study showing regional differences in nitrate contamination of private wells; results from
this analysis were mixed, dependent upon region and decade. These analyses demonstrate using historical raw water nitrate
monitoring data to supplement finished water data for exposure assessment is appropriate for individual Iowa municipal supplies
using alluvial groundwater, lakes or reservoirs. Using alluvial raw water data on a regional basis is dependent on region
and decade. 相似文献