首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   13篇
  国内免费   24篇
安全科学   2篇
环保管理   71篇
综合类   62篇
基础理论   6篇
污染及防治   12篇
评价与监测   6篇
社会与环境   7篇
灾害及防治   1篇
  2023年   5篇
  2022年   2篇
  2021年   7篇
  2020年   8篇
  2019年   6篇
  2018年   7篇
  2017年   9篇
  2016年   6篇
  2015年   6篇
  2014年   9篇
  2013年   17篇
  2012年   13篇
  2011年   12篇
  2010年   7篇
  2009年   12篇
  2008年   11篇
  2007年   5篇
  2006年   11篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1998年   2篇
  1994年   1篇
排序方式: 共有167条查询结果,搜索用时 62 毫秒
1.
Modeling of non-point source pollution in a Mediterranean drainage basin   总被引:2,自引:0,他引:2  
SWAT ver. 2000 was used to predict hydrographs, and sediment, nitrate and total phosphorus loadings from a 1349 km2 mountainous/agricultural watershed in Northern Greece. The model was calibrated and verified using continuous meteorological data from eight stations within the drainage area, and runoff, sediment and nutrient concentrations measured at nine stations located within the main tributaries of the watershed, for the time period from May 1st, 1998 to January 31st, 2000. Model validation methodology and resulting input parameters appropriate for Mediterranean drainage basins are presented. Predicted by the model hydrographs, sedimentographs and pollutographs are plotted against observed values and show good agreement. Model performance is evaluated using the root mean square error computation and scattergrams of predicted versus observed data. The validated model is also used to test the effectiveness of three alternative cropping scenarios in reducing nutrient loadings from the agricultural part of the watershed. The study showed that this model, if properly validated, can be used effectively in testing management scenarios in Mediterranean drainage basins.  相似文献   
2.
Riverine nutrient loads are among the major causes of eutrophication of the Baltic Sea. This study applied the Soil & Water Assessment Tool (SWAT) in three catchments flowing to the Baltic Sea, namely Vantaanjoki (Finland), Fyrisån (Sweden), and Słupia (Poland), to simulate the effectiveness of nutrient control measures included in the EU’s Water Framework Directive River Basin Management Plans (RBMPs). Moreover, we identified similar, coastal, middle-sized catchments to which conclusions from this study could be applicable. The first modelling scenario based on extrapolation of the existing trends affected the modelled nutrient loads by less than 5%. In the second scenario, measures included in RBMPs showed variable effectiveness, ranging from negligible for Słupia to 28% total P load reduction in Vantaanjoki. Adding spatially targeted measures to RBMPs (third scenario) would considerably improve their effectiveness in all three catchments for both total N and P, suggesting a need to adopt targeting more widely in the Baltic Sea countries.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01393-x) contains supplementary material, which is available to authorized users.  相似文献   
3.
基于SWAT模型的三峡库区香溪河非点源氮磷负荷模拟   总被引:9,自引:1,他引:8  
三峡水库蓄水后,水动力条件改变下营养盐的过量输入导致部分支流库湾水华现象及水体富营养化问题严重.本文以香溪河为研究示范区,基于GIS平台建立流域下垫面空间数据库,以氮磷为研究对象,应用SWAT模型对流域三大主要水系及涉及35个子流域进行2000-2009年径流、营养盐输出模拟研究,并对实测数据和模拟结果进行分析,结果表明:径流模拟结果校验阶段的效率系数0.65和0.86,确定系数是0.78和0.91,模拟效果较好,径流和营养盐负荷受降雨影响呈正相关关系,在丰水年和丰水季节较大,2000-2009年期间TN和TP年均负荷分别是2640.64和300.01 t,在2007年达到最大值,分别是3475.96和399.20 t,在2005年为最小值,分别是2036.72和226.44 t,TN和TP负荷的贡献率高岚水系>古夫水系>南阳水系,支流TN和TP输出强度空间差异较大,空间分布差异系数分别是0.34和0.58,TN最大值和最小值是29.39 kg·hm-2·a-1和3.86 kg·hm-2·a-1,TP最大值和最小值分别是4.90 kg·hm-2·a-1和0.54 kg·hm-2·a-1.  相似文献   
4.
Devils Lake is a terminal lake located in northeast North Dakota. Because of its glacial origin and accumulated salts from evaporation, the lake has a high concentration of sulfate compared to the surrounding water bodies. From 1993 to 2011, Devils Lake water levels rose by ~10 m, which flooded surrounding communities and increased the chance of an overspill to the Sheyenne River. To control the flooding, the State of North Dakota constructed two outlets to pump the lake water to the river. However, the pumped water has raised concerns about of water quality degradation and potential flooding risk of the Sheyenne River. To investigate these perceived impacts, a Soil and Water Assessment Tool (SWAT) model was developed for the Sheyenne River and it was linked to a coupled SWAT and CE‐QUAL‐W2 model that was developed for Devils Lake in a previous study. While the current outlet schedule has attempted to maintain the total river discharge within the confines of a two‐year flood (36 m3/s), our simulation from 2012 to 2018 revealed that the diversion increased the Sheyenne River sulfate concentration from an average of 125 to >750 mg/L. Furthermore, a conceptual optimization model was developed with a goal of better preserving the water quality of the Sheyenne River while effectively mitigating the flooding of Devils Lake. The optimal solution provides a “win–win” outlet management that maintains the efficiency of the outlets while reducing the Sheyenne River sulfate concentration to ≤600 mg/L.  相似文献   
5.
Gridded precipitation datasets are becoming a convenient substitute for gauge measurements in hydrological modeling; however, these data have not been fully evaluated across a range of conditions. We compared four gridded datasets (Daily Surface Weather and Climatological Summaries [DAYMET], North American Land Data Assimilation System [NLDAS], Global Land Data Assimilation System [GLDAS], and Parameter‐elevation Regressions on Independent Slopes Model [PRISM]) as precipitation data sources and evaluated how they affected hydrologic model performance when compared with a gauged dataset, Global Historical Climatology Network‐Daily (GHCN‐D). Analyses were performed for the Delaware Watershed at Perry Lake in eastern Kansas. Precipitation indices for DAYMET and PRISM precipitation closely matched GHCN‐D, whereas NLDAS and GLDAS showed weaker correlations. We also used these precipitation data as input to the Soil and Water Assessment Tool (SWAT) model that confirmed similar trends in streamflow simulation. For stations with complete data, GHCN‐D based SWAT‐simulated streamflow variability better than gridded precipitation data. During low flow periods we found PRISM performed better, whereas both DAYMET and NLDAS performed better in high flow years. Our results demonstrate that combining gridded precipitation sources with gauge‐based measurements can improve hydrologic model performance, especially for extreme events.  相似文献   
6.
Climate change poses water resource challenges for many already water stressed watersheds throughout the world. One such watershed is the Upper Neuse Watershed in North Carolina, which serves as a water source for the large and growing Research Triangle Park region. The aim of this study was to quantify possible changes in the watershed’s water balance due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model forced with different climate scenarios for baseline, mid‐century, and end‐century time periods using five different downscaled General Circulation Models. Before running these scenarios, the SWAT model was calibrated and validated using daily streamflow records within the watershed. The study results suggest that, even under a mitigation scenario, precipitation will increase by 7.7% from the baseline to mid‐century time period and by 9.8% between the baseline and end‐century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 7.6%, water yield would increase by 25.1% and 33.2%, and soil water would increase by 1.4% and 1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding seasonal changes will be critical for mitigating the impacts of climate change on water resources.  相似文献   
7.
基于WARMF模型的杭埠-丰乐河流域水文模拟研究   总被引:2,自引:1,他引:1  
研究了WARMF模型在杭埠-丰乐河流域(巢湖流域最大支流)的水文模拟适应性能并进行了流域水文系统分析.利用AVSWAT2000模型将流域划分为37个子流域,利用流域地貌-土壤分布对应关系、土壤剖面结构、地下水位埋深等条件,确定了子流域的平面分组与剖面土层结构,较大程度上降低了流域模型参数校准的难度与不确定性.利用2000~2003年的水文观测数据,在参数灵敏度分析基础上,对模型水文参数进行了校准与检验.结果表明,WARMF在研究区具有较好的适应性能.WARMF模型与AVSWAT2000模型的水文模拟结果对比表明,WARMF模型具有更好的日拟合性能.基于模型的模拟结果,在空间尺度上定量分析了流域从降水开始到入湖的水循环过程,在时间尺度上分析了年内降雨、径流的分布及其对应关系.流域概化、模型的校准与检验以及流域水文时空变化的系统分析方法等对流域水文、环境的模拟研究与系统分析具有探索意义.  相似文献   
8.
VIC模型与SWAT模型在中小流域径流模拟中的对比研究   总被引:3,自引:0,他引:3  
结合GIS与RS技术的分布式水文模型已成为当今水文界研究的重点。从气象与水文水资源学科交叉的角度对分布式水文模型VIC模型与SWAT模型进行研究,并将其应用于白莲河流域,以此探讨该模型在中小流域的适用性。模拟结果表明,VIC模型与SWAT模型在白莲河流域率定期与检验期的模拟效果相差很小。SWAT模型的效率系数与相关系数略高一些,SWAT模型的模拟效果比较平均,每年相差不大;但VIC模型在1995年和1999年模拟效果明显好于其它年份,尤其在2002年,VIC模型模拟的洪峰与实测的相差较大,从而影响总体的效率系数偏低,而SWAT模型模拟的更接近实测值。研究结果表明两种模型对于我国中小流域的径流模拟具有一定的适用性.  相似文献   
9.
Abstract: Assessment tools to evaluate phosphorus loss from agricultural lands allow conservation planners to evaluate the impact of management decisions on water quality. Available tools to predict phosphorus loss from agricultural fields are either: (1) qualitative indices with limited applicability to address offsite water quality standards, or (2) models which are prohibitively complex for application by most conservation planners. The purpose of this research was to develop a simple interface for a comprehensive hydrologic/water quality model to allow its usage by farmers and conservation planners. The Pasture Phosphorus Management (PPM) Calculator was developed to predict average annual phosphorus (P) losses from pastures under a variety of field conditions and management options. PPM Calculator is a vastly simplified interface for the Soil and Water Assessment Tool (SWAT) model that requires no knowledge of SWAT by the user. PPM Calculator was validated using 33 months of data on four pasture fields in northwestern Arkansas. This tool has been extensively applied in the Lake Eucha/Spavinaw Basin in northeastern Oklahoma and northwestern Arkansas. PPM Calculator allows conservation planners to take advantage of the predictive capacity of a comprehensive hydrologic water quality model typically reserved for use by hydrologists and engineers. This research demonstrates the applicability of existing water quality models in the development of user friendly P management tools.  相似文献   
10.
Mixed-integer linear programs are proposed for siting development and conservation areas in watersheds, addressing economic objectives (development perimeter and proximity) and ecological objectives. Links between watershed hydrology and ecology need not be well defined. Parameters for the linear programs are obtained from linearization of the SWAT hydrologic model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号