首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
NanoRem (Taking Nanotechnological Remediation Processes from Lab Scale to End User Applications for the Restoration of a Clean Environment) was a research project, funded through the European Commission's Seventh Framework Programme, which focuses on facilitating practical, safe, economic, and exploitable nanotechnology for in situ remediation of polluted soil and groundwater, which closed in January 2017. This article describes the status of the nanoremediation implementation and future opportunities for deployment based on risk‐benefit appraisal and benchmarking undertaken in the NanoRem Project. As of November 2016, NanoRem identified 100 deployments of nanoremediation in the field. While the majority of these are pilot‐scale deployments, there are a number of large scale deployments over the last five to 10 years. Most applications have been for plume control (i.e., pathway management in groundwater), but a number of source control measures appear to have taken place. Nanoremediation has been most frequently applied to problems of chlorinated solvents and metals (such as chromium VI). The perception of risk‐benefit balance for nanoremediation has shifted as the NanoRem Project has proceeded. Niche benefits are now more strongly recognized, and some (if not most) of the concerns, for example, relating to environmental risks of nanoremediation deployment, prevalent when the project was proposed and initiated, have been addressed. Indeed, these now appear overstated. However, it appears to remain the case that in some jurisdictions the use of nanoparticles remains less attractive owing to regulatory concerns and/or a lack of awareness, meaning that regulators may demand additional verification measures compared to technologies with which they have a greater level of comfort.  相似文献   

2.
Nanoscale zero‐valent iron (nZVI) is the most commonly used nanoremediation material. While there has been a reasonable level of application of nZVI technologies for in situ remediation in the United States, its utilization across Europe has been much more limited. There has been significant uncertainty about the balance between deployment risks and benefits for nanoparticles (NPs), which has affected the regulatory position in several countries. Some member states of the European Union (EU) take a strong precautionary view of the risks from the deployment of NPs into the subsurface, preventing the adoption of the technology. This article provides a risk–benefit assessment for nZVI based on published information and describes the steps that will be taken by a major European research project (NanoRem), as part of its work to provide a basis for better informed decision making in European environmental restoration markets. A key part of this process is dialogue between practitioners and researchers. NanoRem therefore has an active process of communication with different stakeholder networks (regulators, service providers, and site owners). NanoRem hopes to stimulate a consensus on appropriate use of nanoremediation and thereby stimulate effective technology transfer to the European remediation market. ©2015 The Authors  相似文献   

3.
A field pilot test in which hydraulic fracturing was used to emplace granular remediation amendment (a mixture of zero‐valent iron [ZVI] and organic carbon) into fine‐grained sandstone to remediate dissolved trichloroethene (TCE)‐contaminated groundwater was performed at a former intercontinental ballistic missile site in Colorado. Hydraulic fracturing was used to enhance the permeability of the aquifer with concurrent emplacement of amendment that facilitates TCE degradation. Geophysical monitoring and inverse modeling show that the network of amendment‐filled fractures extends throughout the aquifer volume targeted in the pilot test zone. Two years of subsequent groundwater monitoring demonstrate that amendment addition resulted in development of geochemical conditions favorable to both abiotic and biological TCE degradation, that TCE concentrations were substantially reduced (i.e., greater than 90 percent reduction in TCE mass), and that the primary degradation processes are likely abiotic. The pilot‐test data aided in re‐evaluating the conceptual site model and in designing the full‐scale remedy to address a larger portion of the TCE‐contaminated groundwater plume. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The migration of biogeochemical gradients is a useful framework for understanding the evolution of biogeochemical conditions in groundwater at waste sites contaminated with metals and radionuclides. This understanding is critical to selecting sustainable remedies and evaluating sites for monitored natural attenuation, because most attenuation mechanisms are sensitive to geochemical conditions, such as pH and redox potential. Knowledge of how gradients in these parameters evolve provides insights into the behavior of contaminants with time and guides characterization, remedy selection, and monitoring efforts. An example is a seepage basin site at the Savannah River Site in South Carolina where low‐level acidic waste has seeped into groundwater. The remediation of this site relies, in part, on restoring the natural pH of the aquifer by injecting alkaline solutions. The remediation will continue until the pH upflow of the treatment zone increases to an acceptable value. The time required to achieve this objective depends on the time it takes the trailing pH gradient, the gradient separating the plume from influxing natural groundwater, to reach the treatment zone. Predictions of this length of time will strongly influence long‐term remedial decisions. © 2008 Wiley Periodicals, Inc.  相似文献   

5.
Heavy metals and toxic organic contaminants are found at numerous industrial and military sites. The generally poor performance of conventional pump‐and‐treat schemes has made the development of improved methods for contaminated site remediation a significant environmental priority. One such innovative method is cyclodextrin‐enhanced flushing of the contaminated porous media and groundwater. Cyclodextrin is a glucose‐based molecule that is produced on industrial scales by microorganisms. Over the last years, several cyclodextrin derivatives have received extensive research interest. It was shown that cyclodextrins can significantly enhance the solubility of toxic organics, and in some cases, heavy metals and radioactive isotopes. As a sugar, cyclodextrin is considered relatively non‐toxic to humans, plants, and soil microbes. Thus, there are minimal health‐related concerns associated with the injection of cyclodextrin into the subsurface, which is an inherent advantage for use of cyclodextrins as a remediation agent. This paper provides a review of the available literature concerning use of cyclodextrin for remediation of groundwater and soil.  相似文献   

6.
The establishment of soil cleanup levels is a primary concern in site remediation projects. Soil cleanup levels provide targets that drive the remediation process from technology selection through closure. Several state regulatory agencies are currently in the process of developing scientifically based soil cleanup standards. The underlying premise in the derivation of such standards is to ensure that the site will not pose a threat to human health and the environment after remediation has been completed. To accomplish this, remediation project managers must consider several contaminant transport pathways. This article presents the salient features of a model named IMPACT, which was developed to assist in the derivation of soil cleanup levels. IMPACT considers the soil-to-groundwater pathway and predicts the cleanup levels in a contaminated soil layer in the vadose zone such that groundwater quality standards are met at any point in the aquifer.  相似文献   

7.
An integrated approach combining classic and molecular microbiological methods, “in vitro” bioremediation assays and groundwater numerical modeling, has been established to identify optimized solutions for remediating aquifers contaminated with organic pollutants. Bacteria have been isolated from an aquifer contaminated with toluene and methyl tert‐butyl ether (MTBE), selected for their growth with contaminants as a sole carbon source and identified through 16S rDNA partial sequencing. Successive biodegradation laboratory tests have been performed to determine which chemical conditions were more appropriate for the isolated bacteria to more efficiently oxidize toluene and MTBE. A groundwater model was created using FEFLOW code first to determine the movement of the plume front and second to simulate the impact of the biodegradation processes along the groundwater flow directions based on the bioremediation rates obtained in the laboratory. The results show that this innovative and interdisciplinary model can be used to assist in developing monitoring and remediation plans for cleaning up complex contaminated groundwater sites. This approach successfully combines the identification of the optimum biogeochemical conditions for bacterial biodegradation to occur with the predictability of the development of the process over time, ensuring decisive support in the management of contaminated sites. ©2016 Wiley Periodicals, Inc.  相似文献   

8.
Quasi‐passive in situ remediation technologies, such as the use of permeable reactive barriers to treat contaminated groundwater or applications of granular activated carbon to treat polychlorinated biphenyl (PCB)‐contaminated, near‐surface sediments, are proven or promising technologies that may be limited in application due to the traditional construction techniques normally used for placement in the environment. High‐pressure waterjets have traditionally been used to excavate material during mining operations or to cut rock or other durable material. Waterjets have the potential to place amendments in the subsurface at depths greater than those that can be obtained using traditional construction techniques. Likewise, waterjets may have less negative impact on near‐surface utilities and/or sensitive ecological systems. Laboratory experiments were performed to characterize the placement of two solid amendments in a simulated saturated aquifer. A second set of experiments was performed to characterize the effectiveness of waterjets for placing a third amendment in simulated intertidal sediments. The laboratory work focused on characterizing the nature of the waterjet penetration of the aquifer matrix and the saturated sediments, as well as the corresponding waterjet parameters of pressure, nozzle size, and injection time. The laboratory results suggest that field trials may be appropriate for future investigations. © 2005 Wiley Periodicals, Inc.  相似文献   

9.
A new in situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes a horizontal well filled with reactive media to passively treat contaminated groundwater in situ. The approach involves the use of a large‐diameter directionally drilled horizontal well filled with solid reactive media installed parallel to the direction of groundwater flow. The engineered contrast in hydraulic conductivity between the high in‐well reactive media and the ambient aquifer hydraulic conductivity results in the passive capture, treatment, and discharge back to the aquifer of proportionally large volumes of groundwater. Capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and reductions in downgradient concentrations and contaminant mass flux are nearly immediate. Many different types of solid‐phase reactive treatment media are already available (zero valent iron, granular activated carbon, biodegradable particulate organic matter, slow‐release oxidants, ion exchange resins, zeolite, apatite, etc.). Therefore, this concept could be used to address a wide range of contaminants. Laboratory and pilot‐scale test results and numerical flow and transport model simulations are presented that validate the concept. The HRX Well can access contaminants not accessible by conventional vertical drilling and requires no aboveground treatment or footprint and requires limited ongoing maintenance. A focused feasibility evaluation and alternatives analysis highlights the potential cost and sustainability advantages of the HRX Well compared to groundwater extraction and treatment systems or funnel and gate permeable reactive barrier technologies for long‐term plume treatment. This paper also presents considerations for design and implementation for a planned upcoming field installation.  相似文献   

10.
When used in combination with source management strategies, monitored natural attenuation (MNA) is likely to be a technically feasible remediation option if the contaminant persistence time along the flow path is less than (a) the transport time to the compliance point and (b) the time available for groundwater remediation objectives to be achieved. Biodegradation is often the most significant natural attenuation process for benzene, toluene, ethylbenzene, and xylenes (BTEX) in groundwater. While BTEX transport rates increase with groundwater velocity, examination of data obtained from the published literature for seven sites undergoing MNA revealed significant positive correlations between groundwater velocity and first‐order biodegradation rates for toluene (r = 0.83, P < 0.05), ethylbenzene (r = 0.93, P < 0.01), m‐ and p‐xylene (r = 0.96, P < 0.01), and o‐xylene (r = 0.78, P < 0.05). This is attributed to increased dispersion at higher velocities leading to more mixing of electron acceptors with the contaminant plume. There was no positive correlation between groundwater velocity and first‐order biodegradation rates for benzene due to noise in the relationship caused by variations in (a) the concentrations of electron acceptors in the uncontaminated groundwater and (b) the proportions of benzene in the total BTEX concentration in the source area. A regression model of the relationship between groundwater velocity and the first‐order biodegradation rate can be used to delineate operating windows for groundwater velocity within which the contaminant persistence time is less than the transport and remediation times for a given source concentration, target concentration, distance to compliance point, retardation factor, and remediation time. The operating windows can provide decision makers with a rapid indication of whether MNA is likely to be a technically feasible remediation option at a given site. © 2005 Wiley Periodicals, Inc.  相似文献   

11.
Recovering dense nonaqueous‐phase liquid (DNAPL) remains one of the most difficult problems facing the remediation industry. Still, the most common method of recovering DNAPL is to physically remove the contaminants using common technologies such as total fluids recovery pumps, vacuum systems, and “pump‐and‐treat.” Increased DNAPL removal can be attained using surfactants to mobilize and/or solubilize the pollutants. However, very little is understood of the methods developed by petroleum engineers beginning in the 1960s to overcome by‐passed, low‐permeability zones in heterogeneous oil reservoirs. By injecting or causing the formation of viscous fluids in the subsurface, petroleum engineers caused increased in‐situ pressures that forced fluid flow into low permeability units as well as the higher permeability thief zones. Polymer flooding involves injecting a viscous aqueous polymer solution into the contaminated aquifer. Foam flooding involves injecting surfactant to decontaminate the high‐permeability zones and then periodic pulses of air to cause a temporary viscous foam to form in the high‐permeable zones after all DNAPL is removed. Later surfactant pulses are directed by the foam into unswept low‐permeable units. These methods have been applied to DNAPL removal using surfactants but they can also be applied to the injection of bio‐amendments into low‐permeability zones still requiring continued remediation. Here we discuss the principles of mobility control as practiced in an alluvial aquifer contaminated with chlorinated solvent and coal tar DNAPLs as well as some field results. © 2003 Wiley Periodicals, Inc.  相似文献   

12.
An Erratum has been published for this article in Remediation 16(1) 2005, 155–157. Water‐level data collection is a fundamental component of groundwater investigations and remediation. While the locations and depths of monitored wells are important, the frequency of data collection may have a large impact on conclusions made about site hydrogeology. Data‐logging water‐level probes may be programmed to record water levels at frequent intervals, providing site decision makers with abundant, detailed information on the response of an aquifer to both anticipated and unforeseen stresses. In this study, a network of movable probes has provided several years of hourly water‐ level data. The understanding of the site's phytoremediation system has been enhanced by the continuous data, but subsequent insights into an unexpected situation regarding the site's infrastructure have been the most valuable result of the monitoring program. © 2005 Wiley Periodicals, Inc.  相似文献   

13.
As a remediation tool, nanotechnology holds promise for cleaning up hazardous waste sites cost‐effectively and addressing challenging site conditions, such as the presence of dense nonaqueous phase liquids (DNAPLs). Some nanoparticles, such as nanoscale zero‐valent iron (nZVI) are already in use in full‐scale projects with encouraging success. Ongoing research at the bench and pilot scale is investigating particles such as self‐assembled monolayers on mesoporous supports (SAMMS™), dendrimers, carbon nanotubes, and metalloporphyrinogens to determine how to apply their unique chemical and physical properties for full‐scale remediation. There are many unanswered questions regarding nanotechnology. Further research is needed to understand the fate and transport of free nanoparticles in the environment, whether they are persistent, and whether they have toxicological effects on biological systems. In October 2008, the U.S. Environmental Protection Agency's Office of Superfund Remediation and Technology Innovation (OSRTI) prepared a fact sheet entitled “Nanotechnology for Site Remediation,” and an accompanying list of contaminated sites where nanotechnology has been tested. The fact sheet contains information that may assist site project managers in understanding the potential applications of this group of technologies. This article provides a synopsis of the US EPA fact sheet, available at http://clu‐in.org/542F08009 , and includes background information on nanotechnology; its use in site remediation; issues related to fate, transport, and toxicity; and a discussion of performance and cost data for field tests. The site list is available at http://clu‐in.org/products/nanozvi . © 2008 Wiley Periodicals, Inc.  相似文献   

14.
The U.S. Environmental Protection Agency (EPA) has issued guidance to improve cleanup risk management decisions at sites involving contaminated sediments. The guidance is titled Principles for Managing Contaminated Sediment Risks at Hazardous Waste Sites and is important because sediment cleanup decisions are often very technical and complex. While the guidance is not a step‐by‐step “how to” document, it does provide the framework for risk‐based decision making and national consistency. Although it does not answer the more technical questions associated with remediation, it will likely provide site managers with greater certainty related to their decisions and help determine what questions need to be asked for many complex issues. Additional and forthcoming EPA reports, seminars, and products will be useful in building upon this framework. This article provides an overview of the risk management principles presented in the guidance. © 2002 Wiley Periodicals, Inc.  相似文献   

15.
This study demonstrates a remedial approach for completing the remediation of an aquifer contaminated with 1,1,2‐trichlorotrifluoroethane (Freon‐113) and 1,1,1‐trichloroethane (TCA). In 1987, approximately 13,000 pounds of Freon‐113 were spilled from a tank at an industrial facility located in the state of New York. The groundwater remediation program consisted of an extraction system coupled with airstripping followed by natural attenuation of residual contaminants. In the first phase, five recovery wells and an airstripping tower were operational from April 1993 to August 1999. During this time period over 10,000 pounds of CFC‐13 and 200 pounds of TCA were removed from the groundwater and the contaminant concentrations decreased by several orders of magnitude. However, the efficiency of the remediation system to recover residual Freon and/or TCA reduced significantly. This was evidenced by: (1) low levels (< 10 ppb) of Freon and TCA captured in the extraction wells and (2) a slight increase of Freon and/or TCA in off‐site monitoring wells. A detailed study was conducted to evaluate the alternative for the second‐phase remediation. Results of a two‐year groundwater monitoring program indicated the contaminant plume to be stable with no significant increase or decrease in contaminant concentrations. Monitored geochemical parameters suggest that biodegradation does not influence the fate and transport of these contaminants, but other mechanisms of natural attenuation (primarily sorption and dilution) appear to control the fate and transport of these contaminants. The contaminants appear to be bound to the soil matrix (silty and clay units) with limited desorption as indicated by the solid phase analyses of contaminant concentrations. Results of fate and transport modeling indicated that contaminant concentrations would not exceed the action levels in the wells that showed a slight increase in contaminant concentrations and in the downgradient wells (sentinel) during the modeled timeframe of 30 years. This feasibility study for natural attenuation led to the termination of the extraction system and a transaction of the property, resulting in a significant financial benefit for the original site owner. © 2003 Wiley Periodicals, Inc.  相似文献   

16.
Remediation of contaminated sites has focused largely on restoration of groundwater aquifers. Often the stated remedial goal is to achieve conditions allowing unrestricted use and unrestricted exposure. Such total groundwater cleanup has occurred at some sites, but is the exception rather than the rule. At the same time, significant effort occurs to perform risk assessments for potential exposure to contaminants in groundwater at sites, both before and after remediation. The logical synergy between risk assessment and remediation is for risk management to seek opportunities for optimal use of groundwater based upon realistic expectations of cleanup technologies and the relevant acceptable residual (postremediation) levels of contaminants. This article explores an approach to improve this synergistic relationship between risk assessment, risk management, and remediation for groundwater cleanups. ©2015 Wiley Periodicals, Inc.  相似文献   

17.
Over the past 10 years, there has been an increased recognition that matrix diffusion processes are a significant factor controlling the success of groundwater remediation. New field techniques and modeling tools have, consequently, been developed to understand how contaminants diffuse into and then out of low‐permeability (“low‐k”) zones and assess the resulting impact on groundwater quality. Matrix diffusion, in turn, is driven by one key factor: geologic heterogeneity. The importance of heterogeneity is being emphasized in the groundwater field by general rules of thumb such as “90% of the mass flux occurs in 10%‐20% of the cross‐sectional area” and conceptual models that show most of the groundwater flow occurs through the aquifer's “mobile porosity” which just a small fraction of commonly used effective porosity values (between 0.02 and 0.10 for mobile porosity vs. 0.25 for effective porosity). For this study, 141 boring logs from 43 groundwater remediation sites were evaluated to develop an empirically based estimate of the groundwater flow versus aquifer cross‐sectional area to confirm or reject the general flow versus area rules of thumb. This study indicated that at these 43 sites, an average of 30% of the cross‐sectional area carried 90% of the groundwater flow. Our flow‐only analysis does provide moderate (but not confirmatory) support for the “mobile porosity” concept with an estimated representative mobile porosity value of about 0.11 at the 43 sites.  相似文献   

18.
The Gowanus Canal Superfund Site in Brooklyn, New York, is an approximately 1.5‐mile (1.61‐km) long estuary that was historically converted into a canal for industrial and commercial purposes. Three manufactured gas plants (MGPs) were formerly located on the Gowanus Canal and discharged waste into it. Surface sediments remain highly contaminated with polycyclic aromatic hydrocarbons (PAHs) long after the MGPs were razed. A hydrogeologic assessment indicates that groundwater passes through the deeper coal tar–contaminated sediment prior to discharging to the canal. This study was undertaken to investigate if groundwater passing through coal tar–contaminated sediment could be responsible for the ongoing contamination of both surface sediments and surface water in the canal. PAH compound distributions in surface water samples collected from the tidal canal at low tide were compared with PAH compounds found in adjacent groundwater‐monitoring wells, point sources (combined sewer overflows [CSOs]), and surface sediments. The results indicate a strong correlation between PAH contaminant distributions in groundwater, sediment, and surface water, indicating that contaminated groundwater passing through the deeper coal tar–contaminated sediments is the primary mechanism contributing to the contamination of both surface sediment and surface water in the canal. Therefore, any sediment remediation efforts in the Gowanus Canal that fail to evaluate and control the upward transport processes have a high chance of failure due to recontamination from below.  ©2016 Wiley Periodicals, Inc.  相似文献   

19.
Numerical models were used to simulate alternative funnel‐and‐gate groundwater remediation structures near property corners in hypothetical homogeneous and heterogeneous unconfined aquifers. Each structure comprised a highly permeable central gate (hydraulic conductivity = 25 m/d) and soil‐bentonite slurry walls (hydraulic conductivity = 0.00009 m/d). Gates were perpendicular to regional groundwater flow and approximately 5 m from a contaminant plume's leading tip. Funnel segments collinear to the central gate reached property boundaries; additional funnel segments followed property boundaries in the most hydraulically upgradient direction. Structures were 1 m thick and anchored into the base of the aquifer. Two structures were simulated for each aquifer: one with a 3.0‐m‐long central gate and funnels on either side; and a second with a 1.5‐m‐long central gate, funnels on either side, and 0.75‐m‐long end gates. Funnels were lengthened in successive simulations, until a structure contained a contaminant plume. Results suggest that, for the same total gate length, one‐gate structures may facilitate more rapid remediation, up to 44 percent less time in trials conducted in this study, than multiple‐gate structures constructed near property corners. However, in order to effectively contain a plume, one‐gate structures were up to 46 percent larger than multiple‐gate structures. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
A common remedial technology for properties with subsurface soil and groundwater contamination is multiphase extraction (MPE). MPE involves the extraction of contaminated groundwater, free‐floating product, and contaminated soil vapor from the subsurface. A network of recovery wells conveys fluids to a vacuum pump and to the treatment system for the contaminated groundwater and soil vapor. This article describes a study of MPE operational data from nine similar remediation projects to determine the most important design parameters. Design equations from guidance manuals were used to estimate the expected radius of influence (ROI) based on measured field data. ROIs were calculated for the vapor flow rate through the subsurface and for the groundwater drawdown caused by the MPE remediation activities. The calculated ROIs were compared to the measured ROIs to corroborate the assumptions made in the calculations. Once it was established that the calculated and field‐measured ROIs were comparable, a sensitivity analysis determined ranges of different design and operational parameters that most affected the ROIs. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号