首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 888 毫秒
1.
高氯离子废水COD的吸收测定方法探讨   总被引:1,自引:0,他引:1  
本法基于可定量测定K2Cr2O7和Cl-的反应产物Cl2这一原理,在用吸收装置吸收Cl2后,用碘量法测定余氯,从而消除氯离子的干扰.本法具有较高的准确度和精密度.  相似文献   

2.
本文研究了用单乙醇胺作为SO_2吸收剂的可能性。该试剂约有100%的吸收率,在下述几方面本法比四氯汞酸钠法优越:操作简便快速,对SO_2吸收的稳定性好,试剂性能稳定并容易取得纯品而且无毒。本文还研究了试剂浓度、流速和温度对SO_2吸收作用的影响。吸收了的SO_2于盐酸介质中以对氨基偶氮苯一甲醛试剂用分光光度法进行测定。用氨基磺酸  相似文献   

3.
本文采用NaOH、EDTA和三乙醇胺混合溶液吸收空气中H2S3然后直接对吸收液进行示波段谱测定。方法的线性范围为0.003-5.0ppm,最低检出浓度为3ppb,相对标准差为1.2~2.7%,回收率为91.4~104.6%。应用本法测定了11份空气样品,测定结果与亚甲基蓝比色法一致。  相似文献   

4.
土壤和沉积物中,钴、镍的含量约为10ppm左右。直接以火焰原子吸收法测定时,有基体盐的背景吸收而产生干扰,且灵敏度尚嫌不够。采用萃取—火焰原子吸收法分析,可避免干扰,灵敏度提高10~20倍。据报道,可供选用的萃取体系有APDC/MIBK、NaDDTC/MIBK、H_2D_2/醋酸丁酯、1-亚硝基-2-萘酚和2-亚硝基-1-萘酚等。考虑到土壤分析对络合剂选择性的要求,本文以2-亚硝基-1-禁酚萃取体系(NNP/MIBK),以酒石酸铵掩蔽样品中共存金属离子,研究了萃取—火焰原子吸收法测定钴、镍的最佳条件,并应用本法分析了土壤和沉积物样品,获得了满意的结果。  相似文献   

5.
本法可靠性高,虽以石灰为基础但仍避免了湿式脱硫法所共有的堵塞和结垢的问题。戴维(Gavy)S—H烟气脱硫法和一般以石灰和石灰石为基础的湿式脱硫法不同,它采用一种溶液代替浆液来吸收SO_2。由于利  相似文献   

6.
环境水样中的镉都以痕量存在,原子吸收直接测定难以满足要求,水样需要浓缩富集后进行测定。目前,大都采用APDC—MIBK或KI—MIBK萃取。本文采用DDTC—MIBK萃取,火焰原子吸收法测定。本法  相似文献   

7.
采用石墨炉原子吸收法测定土壤中镉(Cd)的含量。用本法测定GBW07910土壤标准物质测定值与标准值基本一致。  相似文献   

8.
本文把原子吸收分光光度计直接用于紫外-可见分光光度法的定量分析中,可对金属元素和多种有机物进行定量分析,与紫外-可见分光光度法对比,结果基本相同。实验表明,本法简便易行,实现了一机多用,扩大了原子吸收分光光度计的使用范围。  相似文献   

9.
本文研究了单乙醇胺用作二氧化硫吸收剂的可行性,新提出的试剂吸收率几乎近100%。在吸收二氧化硫的操作简易性、速度和稳定性以及采用稳定的、易于得到纯品和无毒试剂等方面,优于四氯汞酸盐法。研究了试剂的浓度,流速和温度对吸收二氧化硫的影响,并在酸盐介质中,用对氨基偶氮苯一甲醛的光度法测定吸收的二氧化硫。氨基磺酸可消除二氧化氮的干扰。本法适用于空气中污染物的研究。  相似文献   

10.
在开展甲基汞污染的监测工作中,Gage法的灵敏度约1ppm,我们改进了的方法,灵敏度约1ppb,回收率为80—90%以上。 一、原 理 本法是以半胱氨酸吸收粉装成的吸收柱,把萃取法与还原法结合起来而形成的,即  相似文献   

11.
本实验采用氯气校正法和低浓度重铬酸钾氧化法来分别测定高氯废水的COD值,两种方法主要针对氯离子浓度小于8000mg/l,COD值小于110mg/l的水样进行分析。试验结果表明:采用氯气校正法虽然可行,但是实验装置复杂,可控性差,数据结果精密度差,准确度不高;采用低浓度重铬酸钾氧化法进行高氯废水的coD测定,结果较为准确,且操作同国家标准法(GB11914—89)基本一致,操作过程简单可行,实用价值高。  相似文献   

12.
氯离子是影响水中化学需氧量测定结果准确性的主要干扰因素。当废水中氯离子浓度在2000~8000mg/L时,采用以氯离子浓度为横坐标,其干扰产生的化学需氧量值为纵坐标绘制标准曲线的方法,测定氯离子影响化学需氧量值,用重铬酸钾法的测定值减去氯离子的影响值,得到实际样品的化学需氧量,结果令人满意。  相似文献   

13.
建立了应用X射线吸收近边结构谱(XANES)测定土壤中氯种态及含量的方法并应用该方法对东北地区3种典型农耕土壤(黑土、沼泽土和暗棕壤)进行了分析.本研究以氯化钠、3-氯丙酸以及氯酚红这3种模型化合物谱图作为标准谱图,采用最小二乘法拟合进行定性分析,用一系列不同浓度氯化钠标准谱在2854.80 eV的绝对荧光强度和氯元素浓度线性关系做定量总氯浓度.方法检出限为2 mg·kg-1,相对标准偏差为0%~5%(n=5),回收率为77%~133%.结果表明,研究区土壤总氯含量均值为19 mg·kg-1,其中有机氯平均相对含量高达61%,是无机氯浓度的1~2倍.不同类型土壤中总氯、无机氯和有机氯含量趋势皆为:沼泽土>暗棕壤>黑土.结果表明,XANES法可以无损、全面地测定真实土壤样品中的氯种态及含量,将为进一步研究氯素的地球化学循环提供一定的基础数据.  相似文献   

14.
密封消解法测定高氯离子含盐废水COD_(Cr)的探讨   总被引:4,自引:0,他引:4  
针对国标重铬酸钾法测定高氯离子含盐废水CODCr时的不足 ,采用密封消解法来测定高盐废水CODCr,通过丁酮氧化率、氯离子干扰、混配水样和实际水样测定结果的比较 ,对国标法和密封消解法进行了验证。试验结果表明 :在测定高氯离子含盐废水CODCr值时 ,密封消解法优于重铬酸钾法 ,能够真实准确地反映废水的CODCr。  相似文献   

15.
医院污水处理中ClO_2检测方法的改进研究   总被引:2,自引:0,他引:2  
本研究用R5法制取ClO2 对医院污水进行消毒处理 ,针对碘量法测定剩余ClO2 时的不足 ,通过控制溶液pH值、加入稳定剂、活化剂和掩蔽剂的方法对其进行改进 ,实现了将溶液中ClO2 、Cl2 、ClO- 2 、ClO- 3区分测定的目的。实验表明 ,改进后的检测方法能够真实准确地反映溶液中剩余的ClO2 。  相似文献   

16.
含氯有机污染物中氯同位素测定方法及应用进展   总被引:1,自引:0,他引:1  
本文综述了四种稳定氯同位素的测定方法。重点比较了当前使用最为广泛的两种测定方法,基于CH3Cl+离子的正电离气体质谱法(PEIMS)和基于Cs2Cl+离子的正热电离质谱法(PTIMS)。论述了稳定氯同位素体系(37Cl/35Cl)在含氯有机污染物来源、迁移及转换过程中的应用研究。  相似文献   

17.
随着生活垃圾焚烧技术的普及,垃圾焚烧飞灰的资源化利用迫在眉睫,然而飞灰中的高浓度氯元素严重阻碍了其资源化进程.水洗技术作为常用的脱氯除盐技术,得到越来越多的应用,但除氯效果受飞灰自身性质特征影响较大.本研究从重庆和天津采集了两种理化性质具有较大差异的垃圾焚烧飞灰,在对其粒径分布、化学组成、矿物组成、pH值和浸出毒性等基本特征进行分析表征的基础上,采用水洗技术和碳酸化水洗技术对两种飞灰进行了脱氯处理.结果表明,重庆飞灰氯元素的赋存形态包括NaCl、KCl等可溶性氯盐,还含有较高浓度的难溶氯盐(如CaClOH、Friedel盐和Ca6(CO3)2(OH)7Cl),因此,水洗技术难以达到理想的脱氯效果,氯盐去除率最高为88%.在水洗过程中通入CO2可以显著降低反应体系的pH值,促进难溶盐的转化和溶解,进而提高飞灰氯盐的去除率.重庆飞灰采用加速碳酸化水洗技术,氯盐去除率最高可达94%.天津飞灰中氯元素主要以可溶性氯盐的形式存在,难溶盐占比很少,因此,水洗技术可以达到较高的脱盐率(96%).采用加速碳酸化技术对天津飞灰进行处理,发现氯盐去除率较纯水洗技术反而有所降低,分析其主要原因可能与加速碳酸化过程中碳酸钙等物质的再沉淀对氯盐的裹挟作用有关.由此可知,飞灰自身性特征尤其是氯盐的赋存形态对于脱氯除盐技术的选择有重要影响.因此,实际资源化利用过程中,可根据飞灰性质来决定预处理手段,从而最大化提升效率和节约成本.  相似文献   

18.
采用静水毒性试验法,模拟研究了电厂温排水对黑棘鲷(Acanthopagrus schlegelii)胚胎发育的影响.试验水温为16~18,22,26和30 ℃,ρ(余氯)为0.025,0.050,0.100,0.200,0.400和0.800 mg/L,同时以过滤海水为对照组,每组设3个平行,取黑棘鲷受精卵进行试验,共进行30 h观测.结果表明,16~18 ℃下对照组无胚胎孵化,而在其他3个温度条件下,对照组的胚胎均已破膜并发育至前期仔鱼阶段.其中,22 ℃下对照组孵化率最高,为(93±2.0)%,而26和30 ℃下对照组孵化率分别为(81.9±2.0)%和(52.8±10.6)%.随着ρ(余氯)的升高,胚胎孵化率下降,当ρ(余氯)高于0.400 mg/L时,各组孵化率均低于50%,当ρ(余氯)为0.800 mg/L时,各组孵化率均低于10%,30 ℃组则没有胚胎孵化.回归分析结果显示,黑棘鲷胚胎孵化抑制率与水温和ρ(余氯)呈显著正相关(R=0.90,P<0.05),表明这2种因子对胚胎孵化抑制具有协同毒性效应.经计算,30 h时22,26和30 ℃下,ρ(余氯)对黑棘鲷胚胎发育的半数影响浓度(30 h-EC50)分别为(0.243±0.062),(0.432±0.031)和(0.261±0.046)mg/L,最低可观察效应浓度(LOEC)分别为0.025,0.200和0.050 mg/L,26和30 ℃下无可观察效应浓度(NOEC)为0.100和0.025 mg/L.   相似文献   

19.
为解决稀土、化肥工业中NH4Cl废水难以处理,危害较大的问题,针对广东某厂处理碱性氯化铜蚀刻液废水产生大量NH4Cl的实际废液,提出用电解法处理NH4Cl废液并对最优实验条件进行探究。发现采用阴离子交换膜将电解槽分隔为两极室可防止Cl2与NH4+接触产生易爆炸的NCl3,保证操作安全,且能有效分离阳极产生的Cl2和阴极产生的H2,便于产物收集。在此基础上,通过探究阳极室电解质种类及浓度、阴极室NH4Cl溶液浓度、电解时间对处理效果的影响,得到最佳实验条件为向阳极室加入20 mL浓度为5 g/L的NaCl溶液,向阴极室加入相同体积浓度为100 g/L的NH4Cl溶液,在0.3 A恒电流下电解3 h。在此条件下,反应器中93%的Cl-转化为Cl2和NaClO。该厂每天处理15 t NH4Cl废液,可为企业创收至少1950元。该双室隔膜电解法在有效去除NH4Cl废水中Cl-的同时能够产生NH2·H2O、Cl2和可用于消毒的NaClO,具有装置简单,去除率高的优势,是速率可控、清洁高效的处理技术。  相似文献   

20.
Experiments on CH4/Cl2/O2/N2 oxidation were conducted in an atmospheric pressure flow reactor to understand the influence of chlorine on hydrocarbon oxidation in hazardous waste incineration. The reaction temperature varied from 973 to 1273 K and the chlorine to hydrogen mole ratio (Cl/H) of the inlet mixture varied from 0 to 0.44. The species produced in the reaction were measured online with Fourier transform infrared spectroscopy (FT-IR). It was found that the destruction and removal e ciency of CH4 increased with Cl/H mole ratio. Increasing Cl/H favored COCl2 and CO formation and inhibited the CO oxidation process. As Cl/H approached 0.44, the concentrations of CH2Cl2 and CH3Cl first increased, and then declined. Reaction temperature greatly a ected the reaction system. Increasing temperatures raised the destruction removal e ciency of CH4 and decreased the concentrations of CH3Cl and CH2Cl2. With a certain ratio of Cl/H, the concentrations of CO and COCl2 first increased and then declined. The CO and COCl2 concentration peak was observed around 1100 K and 1023 K, respectively. When the reaction temperature exceeded 1273 K, carbon in CH4 was mostly converted to CO2. It could be concluded that the presence of chlorine enhanced the destruction of CH4, but resulted in the more toxic incomplete combustion products emission such as COCl2 when the reaction temperature was not high enough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号