首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Sugar beet pulp residues (SBPR) from hydrolysis and dewatering of beet pulp were co-digested with municipal sewage sludge (MSS). The highest biogas yields of nearly 512 dm3/kg VSfed (volatile solids fed) were achieved for SBPR, treated both as the monosubstrate and as a mixture with MSS (1 : 1 by weight). Simultaneously, the highest methane production of 348 dm3 CH4/kg VSfed was determined when the sewage sludge was co-digested with 35% SBPR. The analysis of digestate showed that neither ammonia nor volatile fatty acids destabilized the biogas production.

Implications:?Processing of sugar beet pulp into bioethanol via enzymatic hydrolysis and microbial fermentation has become increasingly attractive. However, in this process, only the liquid fraction derived from hydrolysis is subjected into alcoholic fermentation, whereas the remaining solid fraction needs to be utilized. This study demonstrated that sugar beet pulp residues after bioethanol production can successfully be co-digested with sewage sludge to increase biogas productivity of anaerobic digesters located at wastewater treatment plants.  相似文献   

2.
3.
Reactive dyes account for one of the major sources of dye wastes in textile effluent. In this study, decolorization of the monoazo dye, Acid Orange 7 (AO7) by the Enterococcus faecalis strain ZL that isolated from a palm oil mill effluent treatment plant has been investigated. Decolorization efficiency of azo dye is greatly affected by the types of nutrients and the size of inoculum used. In this work, one-factor-at-a-time (method and response surface methodology (RSM) was applied to optimize these operational factors and also to study the combined interaction between them. Analysis of AO7 decolorization was done using Fourier transform infrared (FTIR) spectroscopy, desorption study, UV–Vis spectral analysis, field emission scanning electron microscopy (FESEM), and high performance liquid chromatography (HPLC). The optimum condition via RSM for the color removal of AO7 was found to be as follows: yeast extract, 0.1 %?w/v, glycerol concentration of 0.1 %?v/v, and inoculum density of 2.5 %?v/v at initial dye concentration of 100 mg/L at 37 °C. Decolorization efficiency of 98 % was achieved in only 5 h. The kinetic of AO7 decolorization was found to be first order with respect to dye concentration with a k value of 0.87/h. FTIR, desorption study, UV–Vis spectral analysis, FESEM, and HPLC findings indicated that the decolorization of AO7 was mainly due to the biosorption as well as biodegradation of the bacterial cells. In addition, HPLC analyses also showed the formation of sulfanilic acid as a possible degradation product of AO7 under facultative anaerobic condition. This study explored the ability of E. faecalis strain ZL in decolorizing AO7 by biosorption as well as biodegradation process.  相似文献   

4.
Food waste and sewage sludge are the most abundant and problematic organic wastes in any society. Mixture of these two wastes may provide appropriate substrate condition for dark fermentative biohydrogen production based on synergistic mutual benefits. This work evaluates continuous hydrogen production from the cosubstrate of food waste and sewage sludge to verify mechanisms of performance improvement in anaerobic sequencing batch reactors. Volatile solid concentration and mixing ratio of food waste and sludge were adjusted to 5 % and 80:20, respectively. Five different hydraulic retention times (HRT) of 36, 42, 48, 72, and 108 h were tested using anaerobic sequencing batch reactors to find out optimal operating condition. Results show that the best performance was achieved at HRT 72 h, where the hydrogen yield, the hydrogen production rate, and hydrogen content were 62.0 mL H2/g VS, 1.0 L H2/L/day, and ~50 %, respectively. Sufficient solid retention time (143 h) and proper loading rate (8.2 g COD/L/day as carbohydrate) at HRT 72h led to the enhanced performance with better hydrogen production showing appropriate n-butyrate/acetate (B/A) ratio of 2.6. Analytical result of terminal-restriction fragment length polymorphism revealed that specific peaks associated with Clostridium sp. and Bacillus sp. were strongly related to enhanced hydrogen production from the cosubstrate of food waste and sewage sludge.  相似文献   

5.
The aim of present study was to develop and evaluate sodium dodecyl sulfate (SDS) self-microemulsifying systems (SMES) for the removal of an anionic dye xylenol orange (XO) from its bulk aqueous media via liquid–liquid adsorption. The composition of SDS SMES was optimized by Box–Behnken statistical design for the maximum removal of XO from its aqueous solution. Various SDS formulations were prepared by spontaneous emulsification method and characterized for thermodynamic stability, self-microemulsification efficiency, droplet size, and viscosity. Adsorption studies were conducted at 8, 16, and 24 h by mixing small amounts of SDS formulations with relatively large amounts of bulk aqueous solution of XO. Droplet size and viscosity of SDS formulations were significantly influenced by oil phase concentration (triacetin), while surfactant concentration had little impact on droplet size and viscosity. However, the percentage of removal of XO was influenced by triacetin concentration, surfactant concentration, and adsorption time. Based on lowest droplet size (35.97 nm), lowest viscosity (29.62 cp), and highest percentage of removal efficiency (89.77 %), formulation F14, containing 2 % w/w of triacetin and 40 % w/w of surfactant mixture (20 % w/w of SDS and 20 % w/w of polyethylene glycol 400), was selected as an optimized formulation for the removal of XO from its bulk aqueous media after 16 h. These results indicated that SDS SMES could be suitable alternates of solid–liquid adsorption for the removal of toxic dyes such as XO from its aqueous solution through liquid–liquid adsorption.  相似文献   

6.
The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.  相似文献   

7.
To characterize Streptomyces isolated from cattle feces for converting lignocellulose into reducing sugars, five Streptomyces strains were screened. All the strains could convert lignocellulose into reducing sugars. The strain A16 accumulate 3.3-folds more reducing sugars on cottonseed shells treated with ethanol than without the treatment (P?<?0.05). The five strains did not accumulate more reducing sugars on rice straws and wheat brans than those on cottonseed shells. Compared with A10 alone, the microbial combination of F1 + A10 accumulated 19, 61, and 25 % less reducing sugars on cottonseed shell, rice straw, and wheat bran than those by A10 solely, respectively (P?<?0.05). Further studies indicated that the activities of avicelase and xylanase were not correlated with the reducing sugar amount accumulated by the test strains. Strain A7 could produce more cellular lipids with xylose and glucose as the sole carbon sources. This study shows the potential for Streptomyces strains from herbivore feces to convert lignocelluloses into lipids and reducing sugars for fuel production.  相似文献   

8.
The effects of ammonia (NH3) on CH4 attenuation in landfill cover materials consisting of landfill cover soil (LCS) and aged municipal solid waste (AMSW), at different CH4 concentrations, were investigated. The CH4 oxidation capacities of LCS and AMSW were found to be significantly affected by the CH4 concentration. The maximum oxidation rates for LCS and AMSW were obtained at CH4 concentrations of 5 % and 20 %(v/v), respectively, within 20 days. CH4 biological oxidation in AMSW was significantly inhibited by NH3 at low CH4 concentrations (5 %, v/v) but highly stimulated at high levels (20 % and 50 %, v/v). Oxidation in LCS was stimulated by NH3 at all CH4 concentrations due to the higher conversion of the nitrogen in NH3 in AMSW than in LCS. NH3 increases CH4 oxidation in landfill cover materials.  相似文献   

9.
The conventional treatment process of palm oil mill effluent (POME) produces a highly colored effluent. Colored compounds in POME cause reduction in photosynthetic activities, produce carcinogenic by-products in drinking water, chelate with metal ions, and are toxic to aquatic biota. Thus, failure of conventional treatment methods to decolorize POME has become an important problem to be addressed as color has emerged as a critical water quality parameter for many countries such as Malaysia. Aspergillus fumigatus isolated from POME sludge was successfully grown in POME supplemented with glucose. Statistical optimization studies were conducted to evaluate the effects of the types and concentrations of carbon and nitrogen sources, pH, temperature, and size of the inoculum. Characterization of the fungus was performed using scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Brunauer, Emmet, and Teller surface area analysis. Optimum conditions using response surface methods at pH 5.7, 35 °C, and 0.57 % w/v glucose with 2.5 % v/v inoculum size resulted in a successful removal of 71 % of the color (initial ADMI of 3,260); chemical oxygen demand, 71 %; ammoniacal nitrogen, 35 %; total polyphenolic compounds, 50 %; and lignin, 54 % after 5 days of treatment. The decolorization process was contributed mainly by biosorption involving pseudo-first-order kinetics. FTIR analysis revealed that the presence of hydroxyl, C–H alkane, amide carbonyl, nitro, and amine groups could combine intensively with the colored compounds in POME. This is the first reported work on the application of A. fumigatus for the decolorization of POME. The present investigation suggested that growing cultures of A. fumigatus has potential applications for the decolorization of POME through the biosorption and biodegradation processes.  相似文献   

10.
The goal of this research was to assess the potential of several industrial wastes to immobilise metals in two polluted soils deriving from an old Pb/Zn mine. Two different approaches were used to assess the performance of different amendments: a chemical one, using extraction by ethylenediaminetetraacetic acid (EDTA), and a biological one, using Lupinus albus as a bio-indicator. Four amendments were used: inorganic sugar production waste (named ‘sugar foam’, SF), sludge from a drinking water treatment sludge (DWS), organic waste from olive mill waste (OMW) and paper mill sludge (PMS). Amendment to soil ratios ranged from 0.1 to 0.3 (w/w). All the amendments were capable of significantly decreasing (p?<?0.05) EDTA-extractable Pb, Zn and Cu concentrations in the two soils used, with decreases in ranges 21–100, 25–100 and 2–100 % for Pb, Zn and Cu, respectively. The amendments tested were also effective in reducing the bioavailability of Pb and Zn for L. albus, which gave rise to a decrease in shoot metal accumulation by the lupine plants compared to that found in the control soil. That decrease reached up to 5.6 and 2.8 times for Pb and Zn, respectively, being statistically significant in most cases. Moreover, application of the OMW, DWS and SF amendments led to higher average values of plant biomass (up to 71 %) than those obtained in the control soil. The results obtained showed the technology put forward to be a viable means of remediating mine soils as it led to a decrease in the availability and toxicity of metals and, thus, facilitated the growth of a vegetation layer.  相似文献   

11.
The present investigation demonstrated pretreatment of lignocellulosic biomass rice straw using natural deep eutectic solvents (NADESs), and separation of high-quality lignin and holocellulose in a single step. Qualitative analysis of the NADES extract showed that the extracted lignin was of high purity (>90 %), and quantitative analysis showed that nearly 60?±?5 % (w/w) of total lignin was separated from the lignocellulosic biomass. Addition of 5.0 % (v/v) water during pretreatment significantly enhanced the total lignin extraction, and nearly 22?±?3 % more lignin was released from the residual biomass into the NADES extract. X-ray diffraction studies of the untreated and pretreated rice straw biomass showed that the crystallinity index ratio was marginally decreased from 46.4 to 44.3 %, indicating subtle structural alterations in the crystalline and amorphous regions of the cellulosic fractions. Thermogravimetric analysis of the pretreated biomass residue revealed a slightly higher T dcp (295 °C) compared to the T dcp (285 °C) of untreated biomass. Among the tested NADES reagents, lactic acid/choline chloride at molar ratio of 5:1 extracted maximum lignin of 68?±?4 mg g?1 from the rice straw biomass, and subsequent enzymatic hydrolysis of the residual holocellulose enriched biomass showed maximum reducing sugars of 333?±?11 mg g?1 with a saccharification efficiency of 36.0?±?3.2 % in 24 h at 10 % solids loading.  相似文献   

12.
The effects of field dodder on physiological and anatomical processes in untreated sugar beet plants and the effects of propyzamide on field dodder were examined under controlled conditions. The experiment included the following variants: N—noninfested sugar beet plants (control); I - infested sugar beet plants (untreated), and infested plants treated with propyzamide (1500 g a.i. ha?1 (T1) and 2000 g a.i. ha?1(T2)). The following parameters were checked: physiological—pigment contents (chlorophyll a, chlorophyll b, total carotenoids); anatomical -leaf parameters: thickness of epidermis, parenchyma and spongy tissue, mesophyll and underside leaf epidermis, and diameter of bundle sheath cells; petiole parameters: diameter of tracheid, petiole hydraulic conductance, xylem surface, phloem cell diameter and phloem area in sugar beet plants. A conventional paraffin wax method was used to prepare the samples for microscopy. Pigment contents were measured spectrophotometrically after methanol extraction. All parameters were measured: prior to herbicide application (0 assessment), then 7, 14, 21, 28 and 35 days after application (DAA). Field dodder was found to affect the pigment contents in untreated sugar beet plants, causing significant reductions. Conversely, reduction in the treated plants decreased 27% to 4% for chlorophyll a, from 21% to 5% for chlorophyll b, and from 28% to 5% for carotenoids (T1). Also, in treatment T2, reduction decreased in infested and treated plants from 19% to 2% for chlorophyll a, from 21% to 2% for chlorophyll b, from 23% to 3% for carotenoids and stimulation of 1% and 2% was observed 28 and 35 DAA, respectively. Plants infested (untreated) by field dodder had lower values of most anatomical parameters, compared to noninfested plants. The measured anatomical parameters of sugar beet leaves and petiole had significantly higher values in noninfested plants and plants treated with propyzamide than in untreated plants. Also, the results showed that propyzamide is an adequate herbicide for control of field dodder at the stage of early infestation.  相似文献   

13.
The feasibility of using dried attached-growth biomass from the polyurethane (PU) foam cubes as a solid carbon source to enhance the denitrification process in the intermittently aerated moving bed sequencing batch reactor (IA-MBSBR) during the treatment of low COD/N containing wastewater was investigated. By packing the IA-MBSBR with 8 % (v/v) of 8-mL PU foam cubes saturated with dried attached-growth biomass, total nitrogen removal efficiency of 80 % could be achieved for 10 consecutive cycles of operation when the intermittent aeration strategy of consecutive 1 h of aeration followed by 2 h of non-aeration period during the REACT period of the IA-MBSBR was adopted. Negligible release of ammonium nitrogen (NH4 +–N) and slow-release of COD from the dried biomass would ensure that the use of this solid carbon source would not further burden the treatment system. The slow-releasing COD was found to have no effect in promoting the assimilation process and would also allow the carbon source to be used for many cycles of operation. The ‘carbon-spent’ PU foam cubes could be reused by merely drying at 60 °C at the end of the operational mode. Thus, the dried attached-growth biomass formed on the PU foam cubes could be exploited as an alternative solid carbon source for the enhancement of denitrification process in the IA-MBSBR.  相似文献   

14.
One-time ultrasonication pre-treatment of Rhodobacter sphaeroides was evaluated for improving biohydrogen production via photofermentation. Batch experiments were performed by varying ultrasonication amplitude (15, 30, and 45%) and duration (5, 10, and 15 min) using combined effluents from palm oil as well as pulp and paper mill as a single substrate. Experimental data showed that ultrasonication at amplitude 30% for 10 min (256.33 J/mL) achieved the highest biohydrogen yield of 9.982 mL H2/mLmedium with 5.125% of light efficiency. A maximum CODtotal removal of 44.7% was also obtained. However, when higher ultrasonication energy inputs (>256.33 J/mL) were transmitted to the cells, biohydrogen production did not improve further. In fact, 20.6% decrease of biohydrogen yield (as compared to the highest biohydrogen yield) was observed using the most intense ultrasonicated inoculum (472.59 J/mL). Field emission scanning electron microscope images revealed the occurrence of cell damages and biomass losses if ultrasonication at 472.59 J/mL was used. The present results suggested that moderate ultrasonication pre-treatment was an effective technique to improve biohydrogen production performances of R. sphaeroides.  相似文献   

15.
Chlorinated hydrocarbons are the most common organic pollutants in groundwater systems worldwide. In this study, we developed bio-beads with immobilized anaerobic bacteria, zero-valent iron (ZVI), and activated carbon (AC) powder and evaluated their efficacy in removing 1,1,1-trichloroethane (TCA) from groundwater. Bio-beads were produced by polyvinyl alcohol, alginate, and AC powder. We found that the concentration of AC powder used significantly affected the mechanical properties of immobilized bio-beads and that 1.0 % (w/v) was the optimal concentration. The bio-beads effectively degraded TCA (160 mg L?1) in the anaerobic medium and could be reused up to six times. The TCA degradation rate of bio-beads was 1.5 and 2.3 times greater, respectively, than ZVI + AC treatment or microbes + AC treatment. Measuring FeS produced by microbial reactions indicated that TCA removal occurred via FeS-catalyzed dechlorination. Analysis of clonal libraries derived from bio-beads demonstrated that the dominant species in the community were Betaproteobacteria and Gammaproteobacteria, which may contribute to the long-term stability of ZVI reactivity during TCA dechlorination. This study shows that the combined use of immobilized anaerobic bacteria, ZVI, and AC in bio-beads is effective and practical for TCA dechlorination and suggests they may be applicable towards developing a groundwater treatment system for the removal of TCA.  相似文献   

16.
Recycled waste wood is being increasingly used for energy production; however, organic and metal contaminants in by-products produced from the combustion/pyrolysis residue may pose a significant environmental risk if they are disposed of to land. Here we conducted a study to evaluate if highly polluted biochar (from pyrolysis) and ash (from incineration) derived from Cu-based preservative-treated wood led to different metal (e.g., Cu, As, Ni, Cd, Pb, and Zn) bioavailability and accumulation in sunflower (Helianthus annuus L.). In a pot experiment, biochar at a common rate of 2 % w/w, corresponding to ~50 t ha?1, and an equivalent pre-combustion dose of wood ash (0.2 % w/w) were added to a Eutric Cambisol (pH 6.02) and a Haplic Podzol (pH 4.95), respectively. Both amendments initially raised soil pH, although this effect was relatively short-term, with pH returning close to the unamended control within about 7 weeks. The addition of both amendments resulted in an exceedance of soil Cu statutory limit, together with a significant increase of Cu and plant nutrient (e.g., K) bioavailability. The metal-sorbing capacity of the biochar, and the temporary increase in soil pH caused by adding the ash and biochar were insufficient to offset the amount of free metal released into solution. Sunflower plants were negatively affected by the addition of metal-treated wood-derived biochar and led to elevated concentration of metals in plant tissue, and reduced above- and below-ground biomass, while sunflower did not grow at all in the Haplic Podzol. Biochar and ash derived from wood treated with Cu-based preservatives can lead to extremely high Cu concentrations in soil and negatively affect plant growth. Identifying sources of contaminated wood in waste stream feedstocks is crucial before large-scale application of biochar or wood ash to soil is considered.  相似文献   

17.
Seventeen natural sweeteners available on the Polish market were screened for total phenolic content, by the Folin-Ciocalteu method, and for antioxidant activity, using the ferric reducing antioxidant power (FRAP) assay and the 2,2′-Azinobis (3-ethylbenzthiazoline-6-sulphonic acid) radical cation decolorization assay (ABTS·+). In addition, we analyzed antibacterial activities against Staphylococcus aureus strains: both those susceptible and those resistant to methicillin (MRSA). The results of the study showed that total phenolic content, antioxidant activity and antibacterial activity differ widely among different samples of sweeteners. Phenolic content, expressed as a gallic acid equivalent, ranged from 0 mg kg?1 in white, refined sugar, xylitol and wheat malt syrup to 11.4 g kg?1 in sugarcane molasses. Antioxidant activity was lowest in refined white sugar, xylitol, brown beet sugar, liquid fructose, and rape honey; it was average in spelt syrup and corn syrup, and highest in sugar cane, beet molasses, date and barley syrups. Despite the great variety of sweeteners, a strong correlation was noted between the concentration of phenolics and antioxidant properties, as determined by the ABTS·+ method (r = 0.97) and the FRAP assay (r = 0.77). The strongest antibacterial activity was observed in sugarcane molasses, which was lethal to S. aureus strains at 2 and 4% concentrations in medium for susceptible and MRSA strains respectively. Other sweeteners kill bacteria in 6–15% solutions, whereas some did not show any antibacterial activities against S. aureus strains, even at 20% concentrations. Due to their high antioxidant and antibacterial activities, some of the tested sweeteners have potential therapeutic value as supporting agents in antibiotic therapy.  相似文献   

18.
The goal was to determine dissolution potency of betulinol and wood sterols (WSs) from pulp and paper mill-contaminated sediments and the current stratification for assessment the load due to potential erosion in the river-like watercourse. Both compounds are wood extractives, which may be toxic to benthos and fish. This research continues a study in which other wood extractives, resin acids and their derivative, retene, were analysed. Sediments were collected from 1, 3.5, 12, 15, and 33 km downstream from the pulp and paper mills, and from 2 upstream reference sites. The dissolution potency into sediment–water elutriates (1?+?4?v/v) was studied by two agitation times and temperatures. The vertical amounts of extractives were determined from the uppermost 20 cm of sediment. The amounts of extractives potentially released were estimated from the sediment layers 0–2 and 2–5 cm by using spatial interpolation. According to the interpolation, the total amount of betulinol and β-sitosterol was calculated as kg/ha in the whole sediment area. Significant concentrations of betulinol (1,666 μg/g, dw) and WSs (2,886 μg/g, dw) were measured from the sediments. According spatial interpolation, the highest calculated amount of betulinol (4,726 kg/ha) and that of the most abundant WS, β-sitosterol (3,571 kg/ha), were in the lake where the effluents were discharged. In the dissolution experiment, the highest concentration of betulinol in sediment (0–10 cm) and elutriate was 412 μg/g (dw) and 165 μg/l, respectively. For WSs, concentrations were 768 μg/g (dw) in sediment and 273 μg/l in elutriate. In a worst-case scenario, betulinol may be desorbed to water in concentrations which are hazardous to aquatic animals. Instead WSs are not a risk in this study area. The amount of desorption varied depending on the concentration of contaminants in sediment, the nature of disturbance, and the sediment organic carbon content.  相似文献   

19.
Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m3/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.  相似文献   

20.
Pollutants including heavy metals and brominated flame retardant were detected in 10 types of production wastes from a typical printed circuit board manufacturing plant, and their inventories were estimated. Rinsing water from etching process had the highest concentrations of copper (665.51 mg/L), lead (1.02 mg/L), nickel (3.60 mg/L), chromium (0.97 mg/L), and tin (1.79 mg/L). Powdered solid waste (SW) from the cut lamination process contained the highest tetrabromobisphenol-A (TBBPA) levels (49.86 mg/kg). Polybrominated diphenyl ethers (PBDEs) were absent in this plant, in agreement with the international regulations of PBDE phase out. The pollutant inventories in the wastes exhibited in the order of copper >?>?zinc?>?tin?≈?nickel?>?lead?>?chromium >?>?TBBPA. The potential environmental impact of pollutants in SW during production and disposal were further investigated. A high partitioning of pollutant concentration between the total suspended particle and SW (?0.10?K TS?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号