首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hu Z 《Chemosphere》2008,72(2):312-318
The biokinetics of attached and suspended bacteria are an essential component of activated sludge models, anaerobic digestion models and biofilm models. These parameters are often assumed or “confirmed” based on the goodness-of-fit of the bioprocess models. Using a microbial fuel cell with a baffled reactor chamber, the attached- and mixed-growth microbial decay coefficients were evaluated under anaerobic conditions. The capability for real-time voltage recording allows easy and accurate measurement of the anaerobic microbial decay coefficients (bL, lysis-regrowth approach), which were determined to be 0.11 ± 0.01 and 0.15 ± 0.01 d−1 for attached (to anode) and mixed (present in the anode chamber) growth microorganisms, respectively. The corresponding half-saturation constants using glucose as a substrate were 204 ± 10 and 123 ± 1 mg COD l−1. Hence, like an oxygen uptake rate-based approach to measure the microbial kinetics under aerobic conditions, the electrochemical recording provides an attractive method to measure anaerobic microbial decay coefficients.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) are one of the main classes of contaminants in the terrestrial environment. Concentrations of biphenyl, fluorene, phenanthrene and pyrene were added to soil samples in order to investigate the anaerobic degradation potential of PAHs under denitrifying conditions. A mixed population of microorganisms obtained from a paddy soil was incubated for 20 days in anaerobic conditions in the presence of soil alone or with nitrate, adding, as electron donors, PAHs and, in some samples, glucose or acetate. At regular time intervals oxidation-reduction potential, PAHs concentration, microbial ATP and nitrate concentration into the solution were measured. Degradation trends for each hydrocarbon are similar under all conditions, indicating that the molecular conformation prevails over other parameters in controlling the degradation. Poor degradation results were obtained when PAHs were the only organic matter available for the inoculum, thus confirming the recalcitrance to degradation of these compounds. Biodegradation was influenced by the addition of other carbon sources. As better degradation results were generally obtained when acetate or glucose were added, the hypothesis of a co-metabolic enhancement of PAH biodegradation seems likely. Thus, anaerobic biodegradation of PAHs studied, biphenyl, fluorene, phenanthrene and pyrene, seems to be possible both through fermentative and respiratory metabolism, provided that low molecular weight co-metabolites and suitable electron acceptors (nitrate) are present.  相似文献   

3.
Bae HS  Cho YG  Oh SE  Kim IS  Lee JM  Lee ST 《Chemosphere》2002,48(3):329-334
Biodegradability of secondary amines (pyrrolidine, piperidine, piperazine, morpholine, and thiomorpholine) under anaerobic conditions was examined in microbial consortia from six different environmental sites. The consortia degraded pyrrolidine and piperidine under denitrifying conditions. Enrichment cultures were established by repeatedly sub-culturing the consortia on pyrrolidine or piperidine in the presence of nitrate. The enrichments strictly required nitrate for the anaerobic degradation and utilized pyrrolidine or piperidine as a carbon, nitrogen, and energy source for their anaerobic growths. The anaerobic degradation of pyrrolidine and piperidine reduced nitrate to nitrogen gas, indicating that these anaerobic degradations were coupled with a respiratory nitrate reduction.  相似文献   

4.
The microbial degradation of phenols has been reviewed including the phenol-degrading microbes, factors affecting degradability, and the use of biotechnology with emphasis on degradation mechanisms and their kinetics. The mechanism of microbial degradation depends on aerobic and anaerobic conditions. Under aerobic conditions, degradation of phenol was shown to be initiated by oxygenation into catechols as intermediates followed by a ring cleavage at either the ortho or meta position, depending on the type of strain. Anaerobic biodegradation of phenol occurs by carboxylation followed by dehydroxylation (reducing reaction) and dearomatisation. It was also clear that the parameters used in the Haldane model are not constants but vary, hence it may never be possible to describe the kinetic properties of a microbial cell with a single set of constants.  相似文献   

5.
Polyhydroxyalkanoate (PHA) production was achieved using tomato cannery waste coupled with a mixed microbial culture during wastewater treatment. The two-stage PHA production process comprised a sequencing batch reactor (SBR), operating under a periodic feast-famine regime, to accomplish simultaneously wastewater treatment and selection of PHA-accumulating microbes, followed by a batch reactor for the production of PHA-rich biomass. The SBRs were efficient at removing soluble carbon (84%), ammonia (100%), and phosphorus (76%). Meanwhile, PHA-accumulating microbes were enriched under the SBR operating conditions, and PHA content on a cell-weight basis was within the range 7 to 11% in nonfiltered wastewater and 2 to 8% in filtered wastewater. Subsequently, batch studies were implemented with varying loading rates, ranging from 0.4 to 3.2 food-to-microorganism ratios. A maximum 20% PHA content on a cell-weight basis was obtained. Based on the experimental results, a PHA biosynthesis-degradation kinetic model was developed to (1) aid in the design of a pilot- or full-scale PHA production process coupled with wastewater treatment and (2) determine optimal conditions for harvest of PHA-rich biomass.  相似文献   

6.
Under contract to the U.S. Environmental Protection Agency, Research Triangle Institute has been conducting research to improve the precision, accuracy and limit of detection attainable with the EPA Method 25 nonmethane organic (NMO) analyzer. In Method 25, volatile organic carbon (VOC) samples are collected by drawing gas from an emitting source through a dry ice cooled sample trap and into an evacuated collection tank. The hydrocarbon concentration emitted from the source is determined on a per-carbon basis by catalytically converting the trap and tank sample fractions to CO2 and quantitating the amount of CO2 produced using the NMO analyzer. A reduction catalyst evaluation led to the selection of an NMO analyzer reduction catalyst which operates at a moderate temperature and displays no appreciable effect on peak shape. A gas chromatographlc column system which provides better permanent gas separation and hydrocarbon quantitation was also selected for use in the NMO analyzer.  相似文献   

7.
The effect of zinc ions on activated sludge microbes was investigated. Zinc ions inhibit the degradation and transformation of substances, and acclimation has little effect on the inhibition of ammonia and nitrite transformation. The change of diversity and similarity of the bacterial community acclimated by zinc were analysed by random amplified polymorphism DNA (RAPD). The results showed that DNA sequence diversity was different during different stages of acclimation. The microbial diversity of the zinc loading unit was lower than that of the control unit. There were wide differences in diversity, richness, evenness and similarity between the beginning and the end of acclimation, although the chemical oxygen demand removal rate reached the same value at the end. The RAPD fingerprint revealed that some bacteria disappeared and some zinc-tolerant species survived. The results were instructive for us to control the running of biological treatment systems and to apply corresponding recovery techniques in the period after damage.  相似文献   

8.
Surface soil samples, which had no significant As contamination, were examined for As(V) reduction, As(III) oxidation and As mobilization capability. All five soil samples tested exhibited microbial As(V)-reducing activities both in aerobic and anaerobic conditions. Under aerobic conditions when As(V) reduction had almost ceased, oxidation of As(III) to As(V) occurred, whereas only As(V) reduction was observed under anaerobic conditions. In cultures incubated with As(III), As(III) was oxidized by indigenous soil microbes only under aerobic conditions. These results indicate that microbial redox transformations of As are ubiquitous in the natural environment regardless of background As levels. Mobilization through microbially mediated As(V) and Fe(III) reduction occurred both in the presence and absence of oxygen. Significant variation in dissolved As occurred depending on the Fe contents of soils, and re-immobilization of As arose in the presence of oxygen, presumably as a consequence of dissolved As(III) and Fe(II) oxidation. There was no apparent correlation between dissolved Fe(II) and As, suggesting that reductive dissolution of Fe(III) minerals does not necessarily determine the extent of As release from soils.  相似文献   

9.
Synthesis of polyhydroxyalkanoates in municipal wastewater treatment.   总被引:1,自引:0,他引:1  
Biologically derived polyesters known as polyhydroxyalkanoates (PHAs) represent a potentially "sustainable" replacement to fossil-fuel-based thermoplastics. However, current commercial practices that produce PHA with pure microbial cultures grown on renewable, but refined, feedstocks (i.e., glucose) under sterile conditions do not represent a sustainable commodity. Here, we report on PHA production with a mixed microbial consortium indigenous to an activated sludge process on carbon present in municipal wastewaters. Reactors operated under anaerobic/aerobic and aerobic-only mode and fed primary solids fermenter liquor maintained a mixed microbial consortium capable of synthesizing PHA at 10 to 25% (w/w), while reducing soluble COD by approximately 62 to 71%. More critically, an aerobic batch reactor seeded from the anaerobic/aerobic reactor and fed fermenter liquor achieved approximately 53% PHA (w/w). Results presented suggest that environmentally benign production of biodegradable polymers is feasible. We further used PHA-rich biomass to produce a natural fiber-reinforced thermoplastic composite that can be used to offset advanced wastewater treatment costs.  相似文献   

10.
A significant share of the world’s undiscovered oil and natural gas resources are assumed to lie under the seabed of the Arctic Ocean. Up until now, the exploitation of the resources especially under the European Arctic has largely been prevented by the challenges posed by sea ice coverage, harsh weather conditions, darkness, remoteness of the fields, and lack of infrastructure. Gradual warming has, however, improved the accessibility of the Arctic Ocean. We show for the most resource-abundant European Arctic Seas whether and how a climate induced reduction in sea ice might impact future accessibility of offshore natural gas and crude oil resources. Based on this analysis we show for a number of illustrative but representative locations which technology options exist based on a cost-minimization assessment. We find that under current hydrocarbon prices, oil and gas from the European offshore Arctic is not competitive on world markets.  相似文献   

11.
A multidisciplinary study of a crude-oil contaminated aquifer shows that the distribution of microbial physiologic types is strongly controlled by the aquifer properties and crude oil location. The microbial populations of four physiologic types were analyzed together with permeability, pore-water chemistry, nonaqueous oil content, and extractable sediment iron. Microbial data from three vertical profiles through the anaerobic portion of the contaminated aquifer clearly show areas that have progressed from iron-reduction to methanogenesis. These locations contain lower numbers of iron reducers, and increased numbers of fermenters with detectable methanogens. Methanogenic conditions exist both in the area contaminated by nonaqueous oil and also below the oil where high hydrocarbon concentrations correspond to local increases in aquifer permeability. The results indicate that high contaminant flux either from local dissolution or by advective transport plays a key role in determining which areas first become methanogenic. Other factors besides flux that are important include the sediment Fe(II) content and proximity to the water table. In locations near a seasonally oscillating water table, methanogenic conditions exist only below the lowest typical water table elevation. During 20 years since the oil spill occurred, a laterally continuous methanogenic zone has developed along a narrow horizon extending from the source area to 50-60 m downgradient. A companion paper [J. Contam. Hydrol. 53, 369-386] documents how the growth of the methanogenic zone results in expansion of the aquifer volume contaminated with the highest concentrations of benzene, toluene, ethylbenzene, and xylenes.  相似文献   

12.
Reliable design and operation of biological wastewater treatment systems demand robust models of biological degradation processes. However, methods to directly measure key bacterial growth kinetics have not been readily available. Those methods that are available rely on the classic measurement of aerobic respiration using oxygen uptake take rates. This paper shows how the thymidine assay can be used as a rapid and direct measurement of bacterial specific growth rates (mu) in situ for an anaerobic treatment process, independent of aerobic respiration. A filtration-based assay is applied and evaluated a dispersed-phase high-rate anaerobic treatment process, with results obtained in less than an hour. The chemical oxygen demand (COD) biomass in the reactor was 0.52 kg COD m(-3) and the specific growth rate of these anaerobic bacteria was 0.8 +/- 0.2 d(-1). It took the bacterial populations 21.6 hours to double. This is an important advancement from existing methods that use aerobic respiration as a pseudo measurement of bacterial specific growth rates. The method allows rapid and direct measures of microbial growth rates for anaerobic treatment processes.  相似文献   

13.
Miscible-displacement experiments were conducted to examine the impact of microbial lag and bacterial cell growth on the transport of salicylate, a model hydrocarbon compound. The impacts of these processes were examined separately, as well as jointly, to determine their relative effects on biodegradation dynamics. For each experiment, a column was packed with porous medium that was first inoculated with bacteria that contained the NAH plasmid encoding genes for the degradation of naphthalene and salicylate, and then subjected to a step input of salicylate solution. The transport behavior of salicylate was non-steady for all cases examined, and was clearly influenced by a delay (lag) in the onset of biodegradation. This microbial lag, which was consistent with the results of batch experiments, is attributed to the induction and synthesis of the enzymes required for biodegradation of salicylate. The effect of microbial lag on salicylate transport was eliminated by exposing the column to two successive pulses of salicylate, thereby allowing the cells to acclimate to the carbon source during the first pulse. Elimination of microbial lag effects allowed the impact of bacterial growth on salicylate transport to be quantified, which was accomplished by determining a cell mass balance. Conversely, the impact of microbial lag was further investigated by performing a similar double-pulse experiment under no-growth conditions. Significant cell elution was observed and quantified for all conditions/systems. The results of these experiments allowed us to differentiate the effects associated with microbial lag and growth, two coupled processes whose impacts on the biodegradation and transport of contaminants can be difficult to distinguish.  相似文献   

14.
以白碳黑、硅灰、硅藻土和硅胶筛选硅质原料,并与钙质原料电石渣制备了水化硅酸钙。借助XRF、BET、FT—IR等表征手段,通过多次重复除磷实验,研究了硅质原料特性对水化硅酸钙回收磷性能的影响。结果表明,白碳黑具有极高的反应活性,因此可作为制备具有磷回收特性的水化硅酸钙的硅质原料。结合XRD等表征发现,白碳黑的有效利用率是影响水化硅酸钙回收磷性能的关键,该利用率取决于白碳黑与电石渣的摩尔配比以及水热反应温度。当电石渣与白碳黑的摩尔比为1.6:1,反应温度为170℃时,白碳黑具有最佳的利用效率。该条件制备的水化硅酸钙可作为晶种,在其表面结晶形成羟基磷灰石,从而达到磷回收的目的,磷回收后固体物质中的磷含量为19.05%。  相似文献   

15.
This paper reports a study of the anaerobic biodegradation of non-ionic surfactants alkyl polyglucosides applying the method by measurement of the biogas production in digested sludge. Three alkyl polyglucosides with different length alkyl chain and degree of polymerization of the glucose units were tested. The influence of their structural parameters was evaluated, and the characteristics parameters of the anaerobic biodegradation were determined. Results show that alkyl polyglucosides, at the standard initial concentration of 100 mgC L?1, are not completely biodegradable in anaerobic conditions because they inhibit the biogas production. The alkyl polyglucoside having the shortest alkyl chain showed the fastest biodegradability and reached the higher percentage of final mineralization. The anaerobic process was well adjusted to a pseudo first-order equation using the carbon produced as gas during the test; also, kinetics parameters and a global rate constant for all the involved metabolic process were determined. This modeling is helpful to evaluate the biodegradation or the persistence of alkyl polyglucosides under anaerobic conditions in the environment and in the wastewater treatment.  相似文献   

16.
Metagenomics refers to the analysis of DNA from a whole community. Metagenomic sequencing of environmental DNA has greatly improved our knowledge of the identity and function of microorganisms in aquatic, terrestrial, and human biomes. Although open oceans have been the primary focus of studies on aquatic microbes, coastal and brackish ecosystems are now being surveyed. Here, we review so far published studies on microbes in the Baltic Sea, one of the world’s largest brackish water bodies, using high throughput sequencing of environmental DNA and RNA. Collectively the data illustrate that Baltic Sea microbes are unique and highly diverse, and well adapted to this brackish-water ecosystem, findings that represent a novel base-line knowledge necessary for monitoring purposes and a sustainable management. More specifically, the data relate to environmental drivers for microbial community composition and function, assessments of the microbial biodiversity, adaptations and role of microbes in the nitrogen cycle, and microbial genome assembly from metagenomic sequences. With these discoveries as background, prospects of using metagenomics for Baltic Sea environmental monitoring are discussed.  相似文献   

17.
从污染环境分离和筛选得到了9株PAHs降解菌,以其为基本菌种,构建高效修复PAHs复合污染体系的菌群(D)。采用平板稀释涂布计数法对降解体系中菌群(D)的动态结构进行了解析,数据显示菌群内的微生物在降解过程中能相互协作,发挥稳定且高效的降解作用。实验进一步研究了菌群D对单一PAH和混合PAHs的降解特性,结果表明,无论对单一PAH还是混合PAHs,菌群D均具有较强的降解能力。当降解历时6 d,菌群D能使40 mg/L的单一PAH平均降解85.8%,使60 mg/L的混合PAHs平均去除89.4%。菌群D在多环芳烃复合污染体系的生物修复方面具有潜在的应用价值。  相似文献   

18.
Microbial kinetic analysis of three different types of EBNR process   总被引:3,自引:0,他引:3  
Pai TY  Tsai YP  Chou YJ  Chang HY  Leu HG  Ouyang CF 《Chemosphere》2004,55(1):109-118
The disadvantages of developed biological nutrient removal (BNR) processes (additional energy for liquid circulation and addition of external carbon substrate for denitrification in anoxic zones) were improved by reconfiguring the process into (1) an anaerobic zone followed by multiple stages of aerobic-anoxic zones (TNCU3 process) or (2) anaerobic, oxic, anoxic, oxic zones in sequence (TNCU2 process). These two pilot plants were operated at a recycling sludge ratio of 0.5 without internal recycle of nitrified supernatant. The sludge retention time was maintained at 10 d. The main objective of this study is to analyze the kinetics of different microorganisms in these two processes and A2O process by using the Activated Sludge Model No. 2d. The effective removal efficiency of carbon, total phosphorus and total nitrogen at 87-98%, 92-100% and 63-80%, respectively, were achieved in the testing runs. According to model simulations, the microbial kinetics in the TNCU3 and TNCU2 processes would be affected by different operations. When the step feeding strategy was adopted, the HRT was longer due to the less influent flowrate in the front stages and the microbes would grow in quantities by about 6% in the aerobic reactors. In the followed anoxic reactors, the microbes would decrease in quantities by about 12% due to the dilution effect. The dilution effects in TNCU3 and TNCU2 processes did not take place in A2O process because the recycling mixed liquid from the aerobic reactor to the anoxic reactor still contained particulate components. The XH, XPAO, and XAUT concentrations in the effluent of the last tank were lower when the step-feeding mode was adopted. The TNCU3 and TNCU2 processes could be operated efficiently without nitrified liquid circulation and addition of external carbon substrate for denitrification.  相似文献   

19.
The aim of this work was to elucidate the role of nitrate as a terminal electron acceptor on the biodegradation of NPEO. We have characterized the products of NPEO degradation by mixed microbial communities in anaerobic batch tests by means of HPLC, 1H NMR and GC–MS. Anaerobic degradation of NPEO was strictly dependent on the presence of nitrate. Within seven days of anoxic incubation, NP2EO appeared as the major degradation product. After 21 days, NP was the main species detected, and was not degraded further even after 35 days. Nitrate concentration decreased in parallel with NPEO de-ethoxylation. A transient accumulation of nitrite was observed within the time period in which NP formation reached its maximum production. The observed generation of nonylphenol coupled to nitrate reduction suggests that the microbial consortium possessed an alternate pathway for the degradation of NPEO, which was not accessible under aerobic conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号