首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2002年2月对重庆市主城区6条交通干道空气中PM10、CO、NOx、THC进行了监测,分析了这些污染物的时空变化特征及其与车流量的关系。结果表明:六条主干道PM10、CO、NOx、THC的日平均浓度分别为0.30、5.34、0.307、12.84 mg/m3,按空气质量二级标准,超标率分别为95%、60%、74%和100%,最大超标倍数分别为4.97、1.94、8.5和6.05。除THC外,按照污染因子分担率评价,在九龙坡区、渝中区和江北区,首要污染物是PM10,在南岸区、沙坪坝区和大渡口区首要污染物是NOx。沙坪坝区CO和NOx污染最严重,九龙坡区PM10污染最严重。CO、NOx的日变化趋势大致相同,而且与车流量关系较为明显,随着车流量的增加CO、NOx的浓度逐渐增加,但PM10与车流量相关性不大,说明PM10浓度还受其它源的影响。  相似文献   

2.
重庆市主城区交通干道空气污染特征分析   总被引:1,自引:0,他引:1  
2002年2月对重庆市主城区6条交通干道空气中PM10、CO、NOx、THC进行了监测,分析了这些污染物的时空变化特征及其与车流量的关系。结果表明:六条主干道PM10、CO、NOx、THC的日平均浓度分别为0.30、5.34、0.307、12.84mg/m^3,按空气质量二级标准,超标率分别为95%、60%、74%和100%,最大超标倍数分别为4.97、1.94、8.5和6.05。除THC外,按照污染因子分担率评价,在九龙坡区、渝中区和江北区,首要污染物是PM10,在南岸区、沙坪坝区和大渡口区首要污染物是NOx。沙坪坝区CO和NOx污染最严重,九龙坡区PM10污染最严重。CO、NOx的日变化趋势大致相同,而且与车流量关系较为明显,随着车流量的增加CO、NOx的浓度逐渐增加,但PM10与车流量相关性不大,说明PM10浓度还受其它源的影响。  相似文献   

3.
天津滨海新区秋冬季大气污染特征分析   总被引:14,自引:0,他引:14       下载免费PDF全文
为了解天津滨海新区大气污染物浓度水平和污染来源,2009年9月1日~2010年2月28日对NOx、CO、SO2、O3、PM2.5、PM10进行了连续在线观测,并同步观测了气象要素.结果表明,秋冬季上述污染物最高日均值(秋冬平均值±标准差,O3为日小时均值最大值)分别达到300.7(65.4±52.9)×10-9、7.278(1.324±1.169)×10-6、53(13±12)×10-9、95(28±21)×10-9(体积分数)和287.4(62.3±53.6)μg/m3、1421.4(161.9±136) μg/m3. NOx和SO2秋季低于冬季,O3和PM10反之. CO和PM10相对国家二级标准超标率为2%和38%,PM2.5相对WHO标准(75μg/m3)超标率为31%.季节统计日变化显示CO和NOx为早晚双峰型,SO2为中午的单峰型,O3为午后单峰型,且秋季日变化振幅远大于冬季, PM10为早晚双峰型,但冬季比秋季晚出峰2~3h.除冬季PM10,大气污染物浓度49%~74%的逐日变化由气象要素影响.滨海新区大气污染受局地排放和外源输送共同影响,西南方向气流易造成污染物积累,其次是东北方向,而东和东南气流最有利于污染物扩散;各污染物具体表现为NOx主要受局地源控制;SO2主要受外来输送影响;CO和PM2.5同时受本地源和外来源的共同影响;PM10秋季表现为本地源污染,而冬季为本地源和外来源的共同影响.  相似文献   

4.
我国城市地区机动车污染现状与趋势   总被引:96,自引:16,他引:80  
北京、广州和上海近10多年机动车保有量年均增长速率分别为16. 4 % ,16. 5 %和13.4 %,这些城市大约80 %的CO和40 %的NOx来 自于机动车排放。其结果是导致城区大气环境近10 a来NOx浓度逐年上升,己成为广州和北京等少数特大城市的首要污染物;街道大气环境 中NOx和CO日均浓度远远超过国家大气环境质量二级标准,其污染程度比城区整体环境更为严重;己存在严重的光化学烟雾污染,预测表明 城区未来大气环境中q浓度的高低取决于机动车的排放量。因此,我国城市地区大气污染正由煤烟型污染向机动车尾气污染转化。   相似文献   

5.
成都市区夏季大气污染物浓度时空变化特征分析   总被引:25,自引:8,他引:17  
为了解成都市区大气污染物浓度水平及其变化规律,统计分析了2013年6月1日—8月31日3个市区站点(十里店、梁家巷和草堂寺)SO2、NO2、O3、PM2.5、PM10和CO逐时观测资料.结果表明,观测期间O3污染严重,上述3个站点小时均值超标率分别达22%、37%和42%.大气颗粒物污染也较为严重,上述3个站点PM10日均浓度超标率分别为13%、8%和3%,而PM2.5日均值超标率分别高达34%、27%和26%.NO2和CO早晚的浓度高峰主要与机动车流量增加和混合层高度降低有关.由于紫外辐射影响,O3浓度在正午出现峰值.受机动车流量高峰和气象条件的影响,PM2.5和PM10最大值和最小值分别出现在上午和下午.通过对污染物"周末效应"的分析,发现周末O3、PM2.5和PM10的浓度显著高于工作日,SO2、NO2和CO反之.成都市区大气污染受局地排放和外源输送共同影响,其中PM10和NO2主要受局地源控制,而PM2.5、SO2和O3受外输送影响较大.  相似文献   

6.
聊城市春季交通源大气污染特征分析   总被引:3,自引:0,他引:3  
为研究交通源空气污染状况,通过采用自动监测系统,于2009年春季期间,对在聊城市主干道附近布设的6个监测点的空气质量进行监测,获得了其空气污染物浓度特征(1)所有监测点SO2、NOx日均值与O3小时均值均未超标,且O3污染指数很低,表明二次污染甚微;(2)CO是首要污染物,PM10次之,两者日均值超标率均为100%。分析了超标污染物与交通流量的关系,结果表明,PM10浓度与交通量有较高的线性相关性,而CO浓度与交通流量无显著相关性。  相似文献   

7.
为了全面评价农田秸秆焚烧产生的污染事件,并为制定有效的管理措施提供依据,于2006年6月20日监测了西南风下北京南部农田麦秸焚烧产生的污染物向北京传输的过程.获得了SO2、CO、NOx以及可吸入颗粒物(PM10)质量浓度的数据.颗粒物的化学组分数据.数据分析结果表明,污染输送对北京市西南部地区空气质量影响最大(PM10小时浓度超过600μg·m-3),对北部山区影响较小(PM10浓度峰值在110μg·m-3).高浓度污染在市区持续时间最长.麦秸焚烧通过输送增加了PM10(尤其是PM1)、CO、NO2以及NMHC等污染物质,这使得与前一日相比污染物之间的相关关系发生了变化:SO2与其它污染物的相关性不显著,而CO与NO2、CH4与NO显著相关.因子分析进一步揭示,气象条件对污染物浓度变化具有主导作用,而由麦秸焚烧所产生的外来污染源属于次要地位.污染输送过程中,PM25中的硝酸盐类和有机碳、碳黑质量浓度增大.麦秸焚烧所输送的气态污染物和细小颗粒物对人体健康存在威胁,在不利扩散的气象条件下在大气中存留时间加长.研究结果表明,气象条件不利于污染扩散时必须禁止农田秸秆焚烧.  相似文献   

8.
根据济南市历下区5个大气例行监测点位2015年上半年PM2.5、PM10、SO2、CO、NO2、O3逐小时浓度的监测数据,通过SPSS软件对各项污染物的相关性进行分析得出:CO与PM2.5、PM10、SO2、NO2强相关性出现次数最多,表明CO排放源是引起颗粒物污染的主要原因之一.对监测点位周边2 km范围内机动车尾气和餐饮燃煤两项污染源进行排放量估算得出:机动车尾气CO、NOx、PM2.5和PM10年排放量分别为388.18吨、111.18吨、4.35吨和4.72吨;餐饮燃煤CO、SO2、NOx年排放量分别为36.0吨、24.0吨和9.6吨.因此,控制CO排放源对改善济南市大气环境质量至关重要.  相似文献   

9.
奥运时段北京及近周边区域空气污染观测与比对分析   总被引:9,自引:5,他引:4  
孙志强  吉东生  宋涛  凌宏  王跃思  江长胜 《环境科学》2010,31(12):2852-2859
为研究奥运时段北京与近周边区域空气质量的相互影响,评价区域污染源协同减排对奥运时段北京空气质量的作用,寻求北京空气污染预警的有效途径,2008-06-01~2008-10-03在北京奥运村以及近周边的河北涿州、廊坊、香河、燕郊进行了空气污染联网观测.结果表明,夏秋季节北京和近周边首要污染物均为颗粒物,北京和周边可吸入颗粒物(PM10)平均质量浓度分别为(114±66)μg/m3和(128±59)μg/m3;细粒子(PM2.5)质量浓度则分别为(77±47)μg/m3和(81±51)μg/m3;臭氧质量浓度小时最大值的平均分别为(164±52)μg/m3和(165±55)μg/m3;NOx分别为(58±23)μg/m3和(25±14)μg/m3.相对于6月,奥运会时段(8月8日~8月24日)北京地区PM10、PM2.5、O3、NOx的浓度分别下降69%、62%、18%和41%,残奥会时段(9月6日~9月17日)PM10、PM2.5、O3、NOx的浓度分别下降56%、49%、17%和16%.北京大气中细粒子浓度受周边影响严重,而NOx有向周边扩散的潜势,夏季臭氧则表现出区域污染的特征.结合气象要素分析表明,近周边区域联网观测,有助于北京空气质量预警研究,并可为区域协同防控空气污染提供科学支撑.  相似文献   

10.
济南市秋末冬初大气颗粒物和气体污染物污染水平及来源   总被引:4,自引:2,他引:2  
2009年11月23日─12月7日在济南市区对PM2.5、BC(黑碳)和污染物(SO2、NOx、NO、NO2和CO)进行实时监测与分析.观测期间ρ(PM2.5)、φ(SO2)和φ(NOx)分别为171μg/m3、54.3×10-9和107×10-9.其中,φ(SO2)与GB 3095─1996《环境空气质量标准》日标准值相当,φ(NOx)是标准的2.2倍,ρ(PM2.5)是美国环境空气质量标准(35μg/m3)的4.89倍.污染事件期间ρ(PM2.5)、φ(SO2)和φ(NOx)分别达到222μg/m3、74.4×10-9和158×10-9,是非污染期间的1.78、1.67和1.77倍.观测期间SO2主要来源于燃煤排放.在11月25─26日的污染事件中,NOx、BC和PM2.5主要来源于机动车尾气排放,除局地源外,东北风经过济南东北部工业区时也将污染物传输到采样点;而在12月1─2日的污染事件中,以静风为主,污染物积聚,NOx和BC主要来源于机动车尾气排放,PM2.5除了一次污染物,很可能包含一定比例的二次污染物.在非污染事件中,NOx和BC主要来源于机动车尾气排放,部分NOx很可能来源于燃煤排放,而PM2.5主要来源于一次源排放.  相似文献   

11.
天津市大气污染源排放清单的建立   总被引:40,自引:15,他引:25  
通过调研天津市工、农业生产和居民生活的统计资料,研究分析文献报道的各种污染源排放因子,计算出天津市各行业、各区县NOx、SO2、NMVOC、CO、NH3、PM10、PM2.5等污染物的排放量,发展了天津市2003年排放源清单.结果显示,天津市2003年各类污染物质的排放量NOx为1.77×105t,SO2为2.59 ×105t,NMVOC为2.24×105t,CO为1.33×106t,NH3为7.40×104t,PM10为2.52×105t,PM2.5为1.10×105t.从排放源的行业分布来看,燃煤源、汽车移动源、秸秆燃烧源是天津市大气污染物的重要排放源,燃煤源对各污染物的贡献分别为NOx46%,SO284%,NMVOC 1%,CO 58%,PM1018%,PM2.5 24%.火电、水泥、钢铁、炼焦、原油加工等行业依然是重要的工业污染排放源,火电对SO2的贡献为13%,钢铁对SO2的贡献为24%,对CO的贡献为30%.2003年天津市区对NO,、S02、NMVOC、CO等污染物的贡献均高于其它区县,对PM10、PM2.5的贡献也很高;塘沽区对NOx、SO2、NMVOC、CO等污染物的贡献很大,蓟县、武清区、宝坻区对NH3、PM10、PM2.5的贡献很大.  相似文献   

12.
利用合肥地面紫外辐射及环境空气质量观测资料,分析了晴天状况下9-15时逐时紫外线辐射强度与对应时段的PM10、PM2.5、SO2、NO2、O3、CO这6种污染物浓度及空气质量指数(AQI)之间的关系。结果表明:在PM2.5为首要污染物的情况下,紫外线辐射强度与PM2.5、PM10、AQI存在较好的负相关,与PM2.5的相关系统可达-0.72,而与SO2、NO2、O3、CO的相关性较差;与PM2.5的相关性存在明显的日变化,PM2.5/PM10越大,相关性越好;以PM2.5为首要污染物的重度污染可使紫外辐射衰减32%以上。  相似文献   

13.
秦皇岛大气污染物浓度变化特征   总被引:6,自引:4,他引:2  
为了解河北沿海旅游城市秦皇岛大气污染现有水平,研究其变化趋势,于2009年9月~2010年8月对秦皇岛市大气中的典型污染物进行连续监测研究.结果表明,该市大气中NO、NO2、SO2、O3和PM10平均浓度分别为(18±18)、(45±18)、(42±46)、(44±25)和(128±77)μg·m-3,PM10污染最为严重,年均浓度超出国家二级标准(100μg·m-3)接近30%.夏季O3日平均浓度和日小时浓度最大值(O31h max)的平均分别为(64±21)μg·m-3和(126±42)μg·m-3,偏南海洋气团有加重O3污染现象,伴随有短期超标;采暖期大气NOx、SO2和PM10分别是非采暖期的1.5、4.9和1.5倍,PM10和SO2日均值相对国家二级标准的超标率分别为53%和11%.京津冀、环渤海工业区的气团输送和当地海港区高排放叠加可使秦皇岛NOx、SO2和PM10污染物平均浓度上升17%、27%和12%,冬季其三者大气平均浓度飙升至(100±49)、(110±84)和(215±108)μg·m-3.北方内陆干洁气团和南方海洋气团可有效清除秦皇岛市大气污染物.  相似文献   

14.
杭州市区机动车污染物排放特征及分担率   总被引:1,自引:0,他引:1  
选取杭州市区绕城高速、快速路、主干道和民用支路4种典型道路进行工况测试,建立了2010年机动车CO、HC、NOx和PM10排放清单,获得了分车型、燃料类型、排放标准以及道路类型的机动车污染物排放分担率.结果表明,杭州市机动车的污染物排放分担率差别显著,乘用车、出租车和公交车是CO和HC排放的主要来源,重型货车和公交车是NOx和PM10排放的主要来源,且乘用车的NOx排放分担率也较大;柴油车的NOx和PM10的排放分担率远大于其保有量的贡献率,是其排放的主要来源,汽油车是CO和HC排放的主要来源;占保有量30%的国0和国I车辆,对CO、HC、NOx和PM10排放分担率分别为67%、69%、58%和82%;主干道是机动车CO、HC和NOx排放的主要来源,其排放分担率分别为66%、65%和64%,民用支路是PM10排放的主要来源,分担率为55%.  相似文献   

15.
烟台是中国最东部半岛型城市之一,研究应用WRF-CMAQ空气质量模拟系统和排放清单技术,建立以PM2.5质量改善为核心的一次污染物质减排情景和PM2.5浓度下降之间的定量对应关系.分析结果表明,若烟台2020年实现空气质量达标,SO2、NOx、一次PM2.5分别需消减30%、30%和40%以上;一次PM2.5减排控制对PM2.5浓度下降的贡献,是SO2和NOx等常规污染物减排控制效益的8倍左右;如果仅依靠消减SO2和NOx等常规污染物,无法实现PM2.5浓度的大幅度下降.  相似文献   

16.
周炎  易雯  区宇波  冯志诚 《环境》2011,(Z1):26-28,37
建立了2009年珠三角地区机动车SO2、NOx、PM10、THC和CO等五项典型污染物的排放清单,分析了该地区分车型、分城市的机动车排放特征。  相似文献   

17.
基于《道路机动车大气污染物排放清单编制技术指南》建立了红河州2019年机动车排放清单。结果表明:2019年红河州CO、HC、NOx、PM2. 5、PM10和SO2排放总量分别为29494、11908、13259、273、301和138t/a。机动车污染物分担率差别显著,小型汽油载客车、轻型汽油载货车和摩托车是CO的主要排放来源,小型汽油载客车和摩托车对HC排放贡献最大,对NOx、PM2. 5和PM10贡献最大的是大型柴油载货车。汽油车是CO和HC机动车污染物排放的主要贡献源,其排放量分别占排放总量的82. 01%和96. 64%,柴油车是NOx、PM2. 5和PM10的主要贡献源。  相似文献   

18.
2008年奥运期间华北区域大气污染物本底浓度变化与分析   总被引:5,自引:3,他引:2  
吴丹  辛金元  孙扬  王跃思  王普才 《环境科学》2010,31(5):1130-1138
为了解华北区域的大气背景状况,评估污染源限排对区域空气质量的影响以及污染物输送在区域污染中的作用,在2008年奥运期间(6~11月),对华北区域兴隆大气本底监测站主要污染物NOx、SO2、O3和PM2.5进行了连续在线观测,对不同时间段的污染物的浓度水平和日变化特征进行了比较分析,结合地面气象资料和后向轨迹模式初步探讨了污染物的区域传输过程,并对区域不同站点的污染情况进行了初步比较.结果显示,2008年夏季兴隆本底站NOx、SO2、O3与PM2.5平均浓度分别为8.4、10.5、126.0和59.8μg·m-3,秋季平均浓度分别为11.7、17.2、97.5和30.7μg·m-3.奥运时段(2008-08-08~2008-08-24),兴隆NOx、SO2、O3和PM2.5平均浓度分别为6.6、6.8、100.5和33.3μg·m-3,较奥运时段前后平均浓度分别降低了29.0%、46.9%、18.6%和36.5%,与2007年奥运时段同期观测结果相比,NOx浓度下降了62.5%,PM2.5浓度下降了29.0%,奥运时段华北区域空气质量明显改善.在污染物限排之前,兴隆主要污染物的日变化形势都是夜间浓度低,白天浓度不断升高,在傍晚17:00~20:00之间达到峰值,显示了污染物区域输送在兴隆的累积,而污染源排放控制期间污染物白天的积累过程明显减弱,区域输送的污染物含量降低,这些结果表明北京及周边地区污染源的联合控制取得了明显效果.兴隆夏秋季节主要受偏南方向的季风影响,在此方向上对应的污染物浓度值最高,偏南方向上的区域污染输送对兴隆影响较大.将京津冀区域不同站点间的污染物浓度进行比较分析发现,华北区域夏秋季NOx和SO2污染较轻,O3污染不容乐观,PM2.5污染严重,需要引起足够重视.  相似文献   

19.
邯郸市大气复合污染特征的监测研究   总被引:8,自引:2,他引:6  
利用邯郸市4个大气环境监测站点的PM2.5、PM10、O3等在线连续观测数据,对2013年全年的PM2.5、PM10、O3的浓度水平、变化规律和PM2.5/PM10的变化情况进行了分析,并从地形、气象、污染物排放及冬、夏季逐时PM2.5、O3和各类气体污染物浓度之间的关系等方面进行了研究.结果表明:12013年PM2.5、PM10的年均浓度分别为139和238μg·m-3,分别是国家二级标准的4.0倍和3.4倍.PM2.5、PM10日均浓度超过标准的天数均在280 d左右,全年3/4以上天数均超标.其颗粒物污染程度甚至超过北京、天津、长三角和珠三角等超大城市或城市群,属于严重超载的红色预警地区.整个采暖期PM2.5、PM10平均浓度分别为209和322.1μg·m-3,为非采暖期平均浓度的2倍和1.6倍;同时,采暖期PM2.5/PM10平均值为63%,高出非采暖期10%,采暖期细颗粒物污染问题特征明显.22013年O3日最大8小时平均浓度的最大值为238μg·m-3,是国家二级标准的1.5倍,超标天数为53 d,超标率为14.5%;最大时均浓度为288μg·m-3,是国家二级标准的1.4倍,超标小时数为148h,占全年有效数据的1.7%;与北方城市相比,其污染程度超过北京、天津等,略低于洛阳污染水平.3邯郸市大气复合污染的形成,除了区域大气环流与特殊地形叠加影响外,还主要归因于相对较高的人为源大气污染物排放,因此,要想走出复合污染的困局,减排是硬道理,解决灰霾污染需开展颗粒物、NOx、SO2等污染物的协同控制.  相似文献   

20.
文章以太原市机动车排放的实际数据结合气象因素与街道构造,采用OSPM模型计算了2008年太原市夏季(7月)与冬季(12月)车流量高峰期街道内的一次NOx与CO的小时浓度,验证了适用性,并使用模型对太原市55条主干道进行了扩散模拟计算,结果表明:OSPM模型可以较好地模拟太原市NOx与CO的扩散;太原市冬季交通大气污染物浓度要明显高于夏季;从空间分布上来看,污染物浓度基本与车流量分布一致;对比国家大气二级环境质量标准来看,太原市主干道NOx超标较为严重,夏季达到了83.64%,冬季达到了98.18%;夏季CO浓度计算结果全部在二级标准限值内,冬季超标率为16.36%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号