首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 659 毫秒
1.
七虎林河源头区地表腐殖质随着径流的冲刷进入水体,形成了天然有机质(NOM),其中,溶解性有机质(DOM)易对河流水质造成影响。为了研究七虎林河中DOM的时空分布特征及其对水质的影响,开展了6次采样,分析了水体及土壤吸收光谱和荧光光谱特征参数,利用平行因子(PARAFAC)算法解析了水体DOM的特性及来源。结果表明:七虎林河上游水体五日生化需氧量(BOD5)、高锰酸盐指数(CODMn)、化学需氧量(COD)、可溶性有机碳(DOC)的浓度分别为1.4 mg/L±0.2 mg/L、6.1 mg/L±3.0 mg/L、21 mg/L±8 mg/L、7.0 mg/L±3.2 mg/L,BOD5/COD平均值为0.08,说明流域内水体DOM的可生化性差,对水质影响较小。光谱特征参数紫外吸收系数(SUVA254)、荧光指数(FI)、腐殖化指数(HIX)、生物源指数(BIX)分析结果表明,七虎林河上游云山水库库上林区河段DOM的物质组成与水库及库下河段差异显著。库上河段DOM的芳香碳含量更高、分子量更大、自生源组分...  相似文献   

2.
The occurrence and behavior of carbamazepine (CBZ) was investigated in aquatic environment of Yangtze River Delta, East China. The water samples were enriched by solid-phase extraction and analyzed by high-performance liquid chromatography with diode array detector. The validation of the analytical method included linearity (0.1?C1 mg/L), recovery studies, and determination of limits of quantification. Limits of quantification of CBZ in various aquatic samples were in the range of 0.1?C0.2 ??g/L. CBZ was detected in the Tongji University Intramural River, the Huangpu River, and the Suzhou River with the highest concentration of 1,090 ng/L, but not detected in the Nanhengyin River and the Caojia River. In sewage water samples, CBZ was not detected in one of the sewage treatment plants (STPs) but was detected in the raw influents and effluents at the other three selected STPs in Shanghai, with the concentrations ranging from 230 to 1,110 ng/L. CBZ was not completely eliminated after secondary treatment (with the active sludge process).  相似文献   

3.
Nitrogen (N) contamination in the Yellow River mainstream and its tributaries was studied using data from 1960 to 2000 from 312 monitoring sites in the Yellow River system. Data showed that N concentrations in the Yellow River have increased since 1960, especially after 1990. N concentrations in the Yellow River mainstream increased from the upper reaches (less than 1.0 mg L(-1) for TN and less than 0.10 mg L(-1) for NH4(+)-N) to lower reaches (higher than 4-5 mg L(-1) for TN and higher than 1.0 mg L(-1) for NH4(+)-N). However, the highest N contaminations (50-250 mg L(-1) for TN and 10-20 mg L(-1) for NH4(+)-N) was found in some tributaries, which was attributed as an effect of industrial wastewater and municipal sewage. Nitrogen concentrations from several monitoring sites were positively correlated with several regional socio-economic indices, such as population density, fertilization rates, livestock, industrial input and GDP. Depending on location, seasonal N concentrations contrasted among watersheds. Monitoring stations located in rural and agricultural areas showed higher N concentrations during the flood season while those located in areas with urban and industrial centers showed higher N concentration during the dry season. Mainstream flow and N concentrations showed a strong inverse relationship; with higher N concentrations as the river flow declined. Intensive water extraction for agricultural irrigation and increasing N input to the river from fertilized agricultural fields could explain the increasing N concentrations during extensive droughts.  相似文献   

4.
Water quality has degraded dramatically in Wen-Rui Tang River watershed, Zhejiang, China, especially due to rapid economic development since 1995. This paper aims to assess spatial and temporal variations of the main pollutants (NH??-N, TN, BOD(5), COD(Mn), DO) of water quality in Wen-Rui Tang River watershed, using the geographic information system, cluster analysis (CA) and principal component analysis (PCA). Results showed that concentrations of BOD(5), COD(Mn), NH??-N, and TN were significantly higher in tertiary rivers than in primary and secondary rivers. From April 2006 to March 2007, the concentrations of NH? ?-N (2.25-57.9 mg/L) and TN (3.78-70.4 mg/L) in all samples exceeded Type V national water quality standards (≥2 mg/L), while 5.3% of all COD(Mn) (1.83-27.5 mg/L) and 33.6% of all BOD(5) (0.34-50.4 mg/L) samples exceeded Type V national water quality standards (COD(Mn)?≥ 15 mg/L, BOD(5)?≥ 10 mg/L). Monthly changes of pollutant concentrations did not show a clear pattern, but correlation analysis indicated that NH??-N and TN in tertiary rivers had a significant negative correlation with 5-day cumulative rainfall and monthly rainfall, while there were no significant correlations in primary and secondary rivers. The results of CA and spatial analysis showed that the northern part of Wen-Rui Tang River watershed was the most seriously polluted. This region is characterized by the high population density and industrial and commercial activities. The PCA and spatial analysis indicated that the degraded water quality is caused by anthropogenic activities and poor wastewater management.  相似文献   

5.
A study has been made of the presence and reactivity of the most commonly used surfactants, both anionic (linear alkylbenzene sulfonates, LAS, and alkyl ethoxysulfates, AES) and non-ionic (alcohol polyethoxylates, AEOs, and nonylphenol polyethoxylates, NPEOs), in water and surface sediments from the middle stretch of the Guadalete River in SW Spain (12 stations). Average values were between 0.1 and 3.7 mg kg(-1) in sediment, and between 0.2 and 37 μg L(-1) in water. The sorption of surfactants was dominated by hydrophobic mechanisms, so those homologues having longer alkyl chains (e.g. C(18)AEO) showed higher relative percentages and concentrations in sediments compared with water. Local and sharply higher concentrations of these compounds were observed at three sampling stations (7, 9 and 12), indicating the occurrence of wastewater discharges into the river. By analysing the distributions of different surfactant homologues and their metabolites we were able to distinguish between sewage contamination from sources discharging treated and untreated wastewaters. Upstream (stations 1-2), LAS concentrations were below 30 μg L(-1) and the composition of their degradation intermediates (sulfophenyl carboxylic acids, SPCs) (160 μg L(-1)) was dominated by short-chain homologues (C(6)-C(9)SPCs), indicating that the degradation of this surfactant is at an advanced stage. The highest concentration (487 μg L(-1)) of SPCs was detected near the effluent outlet of a sewage treatment plant (STP) (station 12). Sampling stations (7 and 9) affected by untreated wastewater discharges were the only ones showing the presence of the most reactive and biodegradable SPC isomers and homologues (e.g. C(11)SPC). Here, LAS reached the highest concentration values measured (>2 mg L(-1)), and showed a homologue distribution closer to that of commercial mixtures than LAS found at the other stations.  相似文献   

6.
丹江口水库流域氮素时空分布特征   总被引:7,自引:0,他引:7  
为全面了解丹江口水库流域氮素污染状况,对库区26个点位及10条主要入库河流入库口处的表层水样进行了丰水期、平水期、枯水期采样与监测,探讨了氮素时空分布特征。入库口总氮检出范围为1.31~10.96 mg/L,其中泗河和神定河入库口总氮最高。总氮为库区水质主要限制因子,年均总氮质量浓度为1.13~2.71 mg/L;汉江库区整体上总氮污染水平略高于丹江库区,且与丹江库区相比,汉江库区受点源排放的影响较大。10条入库河流总氮的总年均输入量为63 347.31 t/a,其中汉江的总氮输入量最大;入库河流总氮控制的关键在于溶解性有机氮和硝酸盐氮的控制。  相似文献   

7.
Water quality throughout south Florida has been a major concern for many years. Nutrient enrichment in the Indian River Lagoon (IRL) is a major surface water issue and is suggested as a possible cause of symptoms of ecological degradation. In 2005-06, water samples were collected weekly from seven sites along Ten Mile Creek (TMC), which drains into the Indian River Lagoon, to investigate and analyze spatial and temporal fluctuations of nutrients nitrogen (N) and phosphorus (P). The objective of this study was to understand the relationships among chlorophyll a concentration, nutrient enrichment and hydrological parameters in the surface water body.High median concentrations of total P (TP, 0.272 mg L(-1)), PO4-P (0.122 mg L(-1)), and dissolved total P (DTP, 0.179 mg L(-1)); and total N (TN, 0.988 mg L(-1)), NO3(-)-N (0.104 mg L(-1)), NH4+-N (0.103 mg L(-1)), and total Kjeldahl N (TKN, 0.829 mg L(-1)), were measured in TMC. The concentrations of TP, PO4-P, DTP, TN, NO3(-)-N, NH4+-N, and TKN were higher in summer and fall than in winter and spring. However, chlorophyll a and pheophytin concentrations during this period in TMC varied in the range of 0.000-60.7 and 0.000-17.4 microg L(-1), with their median values of 3.54 and 3.02 microg L(-1), respectively. The greatest mean chlorophyll a (10.3 microg L(-1)) and pheophytin (5.71 microg L(-1)) concentrations occurred in spring, while the lowest chlorophyll a (1.49 microg L(-1)) and pheophytin (1.97 mug L(-1)) in fall. High concentrations of PO4-P (>0.16 mg L(-1)), DTP (>0.24 mg L(-1)), NO3(-)-N (>0.15 mg L(-1)), NH4+-N (>0.12 mg L(-1)), and TKN (>0.96 mg L(-1)), occurred in the upstream of TMC, while high concentrations of chlorophyll a (>6.8 mug L(-l)) and pheophytin (>3.9 microg L(-l)) were detected in the downstream of TMC. The highest chlorophyll a (11.8 mug L(-l)) and pheophytin (6.06 microg L(-l)) concentrations, however, were associated with static and open water conditions. Hydrological parameters (total dissolved solid, electrical conductivity, salinity, pH, and water temperature) were positively correlated with chlorophyll a and pheophytin concentrations (P < 0.01) and these factors overshadowed the relationships between N and P concentrations and chlorophyll a under field conditions. Principal component analysis and the ratios of DIN/DP and TN/TP in the water suggest that N is the limiting nutrient factor for phytoplankton growth in the TMC and elevated N relative to P is beneficial to the growth of phytoplankton, which is supported by laboratory culture experiments under controlled conditions.  相似文献   

8.
This study was designed to: (1) evaluate dibutyltin (DBT) and tributyltin (TBT) bi-weekly in the water column for four months during the peak boating season (June–September, 1989) at seven stations in the Back Creek and Severn River area of Maryland waters of Chesapeake Bay; (2) compare butyltin values from the 1989 study with values obtained from a similar butyltin monitoring study conducted in 1988 (after Maryland TBT legislation) and 1986 (before Maryland TBT legislation); (3) determine the extent of TBT paint use in the Back Creek area by surveying boat owners; (4) determine dissolved copper concentrations from three of the seven stations bi-weekly during the four-month study; and (5) compare dissolved copper concentrations at these stations with previous copper data collected in 1988.Mean four-month DBT concentrations ranged from 10 to 73 ng/L at the seven stations. Highest DBT concentrations occurred at Station 1 in a marina; lowest concentrations occurred at Station 7 in the Severn River. Mean four-month TBT concentrations ranged from 177 ng/L at Station 1 (marina) to 21 ng/L at Station 7 (Severn River). Maximum TBT concentrations of 361 and 570 ng/L occurred at marina SDtations 1 and 3, respectively. Temporal trends in both DBT and TBT (station mean concentrations by date) showed that peak concentrations occurred during the early part of the boating season followed by reductions in late summer and early fall. Spike concentrations of both DBT (117 and 62 ng/L) and TBT (308 and 366 ng/L) were reported on two sampling dates near a boat maintenance facility in Back Creek.There was a significant reduction in DBT concentrations from 1986 to 1989 when date was treated as a fixed effect. However, TBT concentrations were not significantly reduced between 1986 and 1989 when mean concentrations of TBT were averaged across stations and dates for each year. A significant reduction was reported at Station 1 (marina station) when each station was examined for differences between years. TBT was also reported to significantly decrease (p=0.0442) at Station 7 between 1988 and 1989. A boat owner survey in the study area showed that 6% of the recreational boats that were surveyed were painted with TBT paint in 1989. This was a significant decrease in TBT paint use from the previous year when 31% of recreational boat owners surveyed used TBT paints.An evaluation of dissolved copper concentrations at three stations in the study area in 1989 showed that mean concentrations from bi-weekly sampling for four months was 10 g/L at Station 1, 7.8 g/L at Station 4 and 2.7 g/L at Station 7. Copper concentrations decreased with distance away from the Back Creek marinas. Copper concentrations at all three stations were significantly lower in 1989 than in 1988.  相似文献   

9.
Polychlorinated biphenyls (PCBs) were measured in raw and finished drinking water at seven Public Water Systems (PWSs) along the Hudson River as part of a baseline monitoring program prior to the extensive sediment dredging of the Upper Hudson River. Water samples were either analyzed using an Aroclor method (based on USEPA Method 508) or a congener method (Modified Green Bay Mass Balance Method). Using the congener-based method, raw water concentrations ranged from <9.3 to 164.3 ng/L and finished water concentrations ranged from <9.3 to 186.6 ng/L. Using the Aroclor method, finished water concentrations ranged from <5.0 to 200.9 ng/L. Most finished water samples above 73.0 ng/L were from a PWS with wells drilled near the river. Excluding the well data, total PCB concentrations in raw water at systems in the Upper River were similar to concentrations at systems in the Lower River, though the congener patterns differed. Paired comparison of total PCB concentrations using the two analytical methods showed good agreement, although raw water showed a different relationship than finished water.  相似文献   

10.
山东省主要河流中抗生素污染组成及空间分布特征   总被引:1,自引:0,他引:1  
采用固相萃取-液相色谱/串联质谱法研究了山东省境内四大流域主要河流中抗生素污染组成及空间分布特征,涉及我国用量最大的6类共20种抗生素。结果表明:20种抗生素均有检出,且大环内酯类、喹诺酮类和四环素类抗生素整体检出浓度较高。就流域而言,半岛诸河流域抗生素污染较小,平均总质量浓度61.4 ng/L;海河流域、小清河流域和淮河流域相对较为严重,平均总质量浓度分别为232、175、118 ng/L。抗生素空间分布呈现一定的规律,检出浓度较高的点位主要集中在人口密集区下游,抗生素污染与周边生活污水、养殖企业废水和城市污水处理厂排水密切相关,而且抗生素组成可从一定程度上反映出污染来源。  相似文献   

11.
This study evaluates the spatial patterns of land occupation and their relationship to water quality in the Cuiabá River watershed, one of the main affluents of the Pantanal floodplain. The impact of farming and other land occupation forms were studied using a three year time series. Monitoring included 15 parameters at 21 stations with a total of 1266 different samples. Ten stations along the Cuiabá River were ordinated by Principal Component Analysis (PCA). For an exploratory analysis in the spatial domain, sub-basins of the Cuiabá watershed were classified according to mean concentrations of selected water quality parameters. Supervised classification of digital Landsat ETM imagery and standard GIS techniques were applied to parameterize land use and occupation according to a watershed scale. Redundancy Analysis (RDA) was then used to evaluate impacts of environmental and socio-economic factors on water quality.A Cuiabá headwater station only shows slightly elevated total coliform counts and concentrations of nutrients in the river after it passes regions of extensive cattle farming. After the confluence with the Manso River, nutrient and COD concentrations increase significantly, receiving loads from sub-basins under intensive agricultural land use, with mean annual concentrations up to 1.74 mg/L of total nitrogen (Kjedahl). Sub-watersheds with intensive fishing culture activities were shown to have significant impact on nitrogen concentrations, reaching mean concentrations of 2.66 mg/L of total nitrogen in the affluents. Most serious biological and chemical water pollution can be observed at stream outlets in the urban agglomeration of Cuiabá/Várzea Grande. Affluent pollution is reflected in the water quality of the Cuiabá River: subsequent monitoring stations in the urban area are ordinated on a gradient of increasing degradation of chemical and biological water quality. The auto-depuration capacity of the Cuiabá River is intact, but elevated concentrations of Phosphorous and Chemical Oxygen Demand can be observed as far away as the Pantanal floodplain, about 120 km downstream from the urban agglomeration.  相似文献   

12.
This study provides the preliminary data set for total dissolved trace metal concentrations in the surface water of the Sava River in Croatia and the assessment of Sava River water quality status. The highest levels of total dissolved metals were observed for Fe, Mn, and Zn (12.6 +/- 7.8 mirog L(-1), 3.44 +/- 3.95 mirog L(-1), and 2.27 +/- 1.53 mirog L(-1), respectively), the intermediate concentrations for Ni, Cu, and Cr (0.59 +/- 0.14 mirog L(-1), 0.54 +/- 0.14 mirog L(-1), and 0.32 +/- 0.06 mirog L(-1), respectively), and the lowest levels for Co, Pb, and Cd (0.064 +/- 0.022 mirog L(-1), 0.055 +/- 0.051 mirog L(-1), and 0.011 +/- 0.004 mirog L(-1), respectively). The results refer to the grab water samples taken at five sites in the period from March to June, 2006. For four trace metals (Mn, Pb, Zn, and Fe), the high temporal variability within one season was observed. It can present a problem for reliable evaluation of total dissolved concentrations of these metals in the river water, if the assessment is based on the occasional grab water sampling. The comparison of results obtained in this study with previously reported data for several unpolluted rivers indicated that Sava River water reflects a certain anthropogenic impact. However, according to the levels proposed by European regulations, it still can be classified as water containing total dissolved trace metals in concentrations not significantly above the natural level.  相似文献   

13.
Isolation of Humic and Non-Humic NOM Fractions: Structural Characterization   总被引:3,自引:0,他引:3  
The combination of RO concentration and XAD-8/XAD-4 resin adsorption techniques was used to isolate the different constituents of the Natural Organic Matter (NOM) from inorganic salts. NOM fractions i.e. colloids, hydrophobic NOM (HPO humic substances), transphilic NOM (TPI) and hydrophilic NOM (HPI) fractions isolated from different surface waters were characterized using 13C NMR and FT-IR spectroscopy and HPLC/Size Exclusion Chromatography coupled with UV and DOC detection. Results showed that the isolation procedure was suitable to quantitatively isolate the different fractions of NOM.  相似文献   

14.
Forage and soil molybdenum (Mo) were measured in the vicinity of a Mo processing plant in southwestern Pennsylvania, USA. Molybdenum concentrations in red clover plants (Trifolium pratense L.), measured at 23 sites, ranged from 1.1 to 56.6 mg kg–1. Fourteen of the 23 sites sampled had red clover plants with Mo concentrations over the threshold value of 6 mg kg–1. Red clover Cu:Mo concentration ratios were below the recommended ratio of 4 in 19 of the sites. The low Cu:Mo values, along with high plant Mo concentrations, indicates that there is a potential risk of molybdenosis in ruminant animals in this area. Acid digested (sorbed) soil Mo concentrations, measured at 30 sites, ranged from 7.0 (background level) to 131 mg kg–1. Using the Baker Soil Test (BST) extract, molybdenum soil concentrations ranged from 0.01 to 3.99 mg kg–1. Regression equations were developed to predict plant uptake of soil Mo based on the red clover plant, soil extracts and soil pH data. The R-squared values for predicting plant uptake were 81.9% for the BST extract and 81.6% for the acid digestion extract plus soil pH. Based on the above results, a protocol has been implemented for assessing the risk of high soil Mo near this Mo processing plant.  相似文献   

15.
A modified Streeter–Phelps equation and the Hydrological Engineering Centers River Analysis System (HEC-RAS) were combined to assess water quality of the Tan-Sui River and its tributaries. The Tan-Sui River is the main source of water supply for northern Taiwan, and the water quality of its stream is significantly affected by tides. In this study, HEC-RAS was employed to assess the impact of tides on water quality and to calculate reoxygenation coefficients. The modified Streeter–Phelps equation was used to calculate water quality in terms of contaminant degradation and reoxygenation. Biochemical oxygen demand (BOD) and ammonia nitrogen (NH3–N), the most important identified sources of water pollution in the rivers investigated, were evaluated. Dissolved oxygen (DO) was also simulated, since it is often used as a staple of water quality. Results showed that employing HEC-RAS for hydraulic calculations improves the modified Streeter–Phelps simulation. In river sections without tidal influence, water quality was sensitive to the BOD and NH3–N degradation constants. Downstream of Chin-Mei Creek, while the BOD degradation constant decreased by 80%, BOD and DO concentrations increased from 7.1?mg/L to 10.7?mg/L and 5.0?mg/L to 7.2?mg/L, respectively, indicating that water quality was not as sensitive to variations of the BOD degradation constant as expected. The concentrations of DO and BOD at the river mouth had a significant impact on water quality for the tidal sections of the investigated rivers due to mixing of tidal and river waters. The BOD and NH3–N degradation constants in the tidal sections had little impact on water quality simulations. This study demonstrated the innovative combination of the modified Streeter–Phelps equation and HEC-RAS to assess the impact of tidal variation and to simulate the water quality of a tidal river when available data is rather limited.  相似文献   

16.
Estrogenic activity risks in the Pearl River system (Liuxi River, Zhujiang River and Shijing River) in South China were assessed by combined chemical analysis and recombinant yeast estrogen screen (YES) bioassay for surface waters and sediments collected in both dry and wet seasons. The xenoestrogens 4-tert-octylphenol, 4-nonylphenol and bisphenol A were detected at almost every sampling site at concentrations of several ng L(-1) (ng g(-1)) to tens of μg L(-1) (μg g(-1)) in surface waters (and sediments). The estrogens estrone and 17β-estradiol were also detected in most of the samples with concentrations from several ng L(-1) (ng g(-1)) to tens of ng L(-1) (ng g(-1)) in surface waters (and sediments). However, synthetic estrogens diethylstilbestrol and 17α-ethinylestradiol were only detected at a few sites. The 17β-estradiol equivalents (EEQ) screened by the YES bioassay were in the range of 0.23-324 ng L(-1) in surface waters and from not detected to 101 ng g(-1) in sediments. Shijing River displayed one to two orders of magnitude higher levels for both measured chemical concentrations and estrogenic activities than the Zhujiang River and the Liuxi River. A risk assessment for the surface waters showed high risks for the downstream reaches of the Liuxi River and the upstream to midstream reaches of the Zhujiang River and the Shijing River. Higher estrogenic risks were observed in the wet season than in the dry season for surface waters, probably due to the input of runoff and direct overflow of small urban streams during heavy rain events. Only small variations in estrogenic risk were found for the sediments between the two seasons, suggesting that sediments are a sink for these estrogenic compounds in the rivers.  相似文献   

17.
宁夏典农河是黄河宁夏段的主要入黄排水沟之一,其水质状况对黄河宁夏-内蒙古段跨省流域水质安全至关重要。选取典农河2011—2020年10个监测点位的16项水质参数,采用综合污染指数(WPI)法,结合相关性分析、主成分分析、聚类分析等分析方法,综合分析该流域水污染特征,并对污染程度进行评估,对污染因子和污染原因进行解析,最终提出管控建议。研究结果表明:2011—2020年,影响典农河水质的主要污染因子为CODCr、NH3-N、TP、TN,对应的年均浓度范围分别为22.3~71.5、0.64~9.09、0.173~0.662、2.89~21.52 mg/L,超标率分别为46%、8%、13%、85%。典农河2011—2020年WPI范围为0.59~1.74,重金属含量一直维持在较低水平。流域TN与TP年均浓度比值范围为20~84,整体呈下降趋势,且各监测点的差异性逐渐减小;BOD5与CODCr浓度比值范围为0.02~0.19,反映出典农河流域水体可生化性较差。各监测断面污染物之间存在较强相关性,其中:流域C...  相似文献   

18.
The objectives of this study were to use both parametric and probabilistic approaches to analyze water column concentrations of both salinity (24,845 measurements) and boron (13,028 measurements) from numerous investigations conducted in the San Joaquin River watershed from 1985 to 2002 to assess spatial and temporal trends and determine the probability of exceeding regulatory targets during both the irrigation and non-irrigation season. Salinity and boron concentrations from 26 mainstem and tributary sites were highly correlated based on this 17 yr data set. Generally, salinity and boron concentrations were higher in winter/spring and lower in summer/fall; higher concentrations of both constituents were reported in tributary sites when compared with the mainstem San Joaquin River. Approximately half the sites showed showed a negative correlation between flow and both constituents. Concentrations of both salinity and boron were somewhat variable with flow conditions for the other sites. Both linear and curvilinear trends were inconsistent over time. The salinity 90th centiles for the 26 sites ranged from 143 to 7,559 micros cm(-1) with the highest 90th centiles in tributary sites. Probabilistic analysis of salinity 90th centiles by year for five sites with extensive data showed a significant decrease over time at two sites and no significant trend for the other three sites. The probability of exceeding the salinity targets during either the irrigation (700 microm cm(-1)) or non-irrigation (1,000 micros cm(-1)) season was greater than 19% for all but three sites. The boron 90th centiles for the 26 sites ranged from 0.41 to 13.6 mg L(-1) with the highest 90th centiles from tributary sites. Probabilistic analysis of the boron 90th centile values by year for the five sites with the most extensive data showed a significant decrease over time at two sites and no significant trend for the other three sites. The probability of exceeding the boron target during the irrigation season (0.80 mg L(-1)) and non-irrigation (1.0 mg L(-1)) season was greater that 18% for all but three sites. Results from this analysis have important regulatory implications as targets for both salinity and boron are frequently exceeded at various sites in the San Joaquin River watershed.  相似文献   

19.
Dissolved organic carbon (DOC) was studied in atmospheric deposition samples collected on a weekly basis in 2005-2009 at 10 forest plots in Italy. The plots covered a wide range of geographical attributes and were representative of the main forest types in Italy. Both spatial and temporal variations in DOC concentrations and fluxes are discussed, with the aim of identifying the main factors affecting DOC variability. DOC concentration increased from bulk to throughfall and stemflow water samples at all sites, as an effect of leaching from leaves and branches, going from 0.7-1.7 mg C L(-1) in bulk samples to 1.8-15.8 mg C L(-1) in throughfall and 4.2-10.7 mg C L(-1) in stemflow, with striking differences among the various plots. Low concentrations were found in runoff (0.5-2.0 mg C L(-1)), showing that the export of DOC via running waters was limited. The seasonality of DOC in throughfall samples was evident, with the highest concentration in summer when biological activity is at a maximum, and minima in winter due to limited DOC production and leaching. Statistical analysis revealed that DOC had a close relationship with organic and total nitrogen, and with nutrient ions, and a negative correlation with precipitation amount. Forest type proved to be a major factor affecting DOC variability: concentration and, to a lesser extent, fluxes were lower in stands dominated by deciduous species. The character of evergreens, and the size and shape of their leaves and needles, which regulate the interception mechanism of dry deposition, are mainly responsible for this.  相似文献   

20.
Records on pollution by metals of minor economic importance (e.g. silver and thallium) but which prove to be toxic are rarely documented in river sediment. This study used two sediment cores collected downstream of the Seine River to describe the temporal evolution of Ag and Tl concentrations in an urban catchment. Radionuclide analysis (i.e. Cs-137 and Pb-210) allowed dating sediment deposition within the cores (1933-2003). Ag concentration reached maximum values of 14.3-24.6 mg kg(-1) in the 1960s and 1970s, before gradually decreasing up to values which approximated 4 mg kg(-1) in 2003. In contrast, Tl concentrations remained roughly constant throughout the core (median value of 0.86 mg kg(-1)). Suspended solids was collected at upstream locations in the catchment to derive the background concentrations in Ag and Tl. Very high Ag concentrations were measured in the upstream Seine River sites (0.33-0.59 mg kg(-1)), compared to the values reported in the literature (0.055 mg kg(-1)). This suggests the presence of a widespread and ancient Ag pollution in the Seine River basin, as demonstrated by the very high Ag enrichment ratios recorded in the cores. Annual flux of particulate Ag in the Seine River was estimated at 1.7 t yr(-1) in 2003. In contrast, Tl concentrations remained in the same order of magnitude as the natural background signal (0.3-0.5 mg kg(-1)). This study suggests that the Seine River basin is free of Tl contamination. Future concerns should hence mostly rely on Ag contamination, in a context of increasing Ag uses and possible releases to the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号